CS 206 - Introduction to Discrete Structures II

November 30, 2016

```
Homework: 8 Instructor: Morteza Monemizadeh
Due Date: Wednesday, December 7 (1:20 pm) TA: Hareesh Ravi
```


Assignment 1:

For two independent roll of a fair die, let X denote the value rolled the first time and Y denote the value rolled the second time.

1. Find $\operatorname{Cov}(X, Y), \operatorname{Var}[X]$, and $\operatorname{Var}[Y]$.
2. Find $\operatorname{Cov}(X+Y, X-Y)$.
3. Are the two random variables $X+Y$ and $X-Y$ independent? Why?

Assignment 2:

Suppose that two random variables X and Y have the following joint probability mass function.

$$
\begin{aligned}
& \operatorname{Pr}[X=1 \wedge Y=1]=\operatorname{Pr}[X=1 \wedge Y=2]=0.25 \\
& \operatorname{Pr}[X=2 \wedge Y=2]=\operatorname{Pr}[X=2 \wedge Y=3]=0.25 \\
& \operatorname{Pr}[X=1 \wedge Y=3]=\operatorname{Pr}[X=2 \wedge Y=1]=0
\end{aligned}
$$

1. Find the marginal probability mass functions (pmf) of X and Y.
2. Find the expectations of X and Y, i.e., $E x[X]$ and $E x[Y]$.
3. Find $\operatorname{Cov}(X, Y)$.

Assignment 3:

Let X be a random variable with the following mass distribution.

$$
\begin{aligned}
& \operatorname{Pr}[X=0]=0.3 \\
& \operatorname{Pr}[X=1]=0.5 \\
& \operatorname{Pr}[X=2]=0.2
\end{aligned}
$$

Find the moment generating function for X.

Assignment 4:

Let X be a random variable with the following density distribution.

$$
\begin{array}{ll}
f(x)=x & \text { if } 0<x<1 \\
f(x)=0 & \text { otherwise }
\end{array}
$$

Find the moment generating function for X.

