
Classification Society of North America

Short Course1

A Combinatorial Introduction
to Cluster Analysis

Melvin F. Janowitz

Associate Director
DIMACS (Center for Discrete Mathematics

and Theoretical Computer Science)
Rutgers, The State University

Piscataway, NJ 08854
email: melj@dimacs.rutgers.edu

June 13, 2002
1The contents of this tutorial represent the views of the author and not necessarily those of

CSNA

1

Contents

1 What is Cluster Analysis? . 3

2 Similarities and Dissimilarities . 4
2a Basic Definitions: . 4
2b Numerical Data: . 6
2c Binary Data . 9
2d Ordinal and Nominal Data . 12
2e Standardization of attributes and missing values 13

3 Some clustering algorithms . 14
3a Agglomerative Algorithms . 15
3b Divisive Algorithms . 29
3c Iterative relocation methods . 30

4 A model for clustering algorithms . 31

5 Validation . 35

References . 40

Additional figures . 43

A Appendix . 46

2

1 What is Cluster Analysis?

This is a branch of exploratory data analysis that was (unfortunately
for users) developed independently by people in a number of disciplines.
This leads to some confusion in definitions and terminology. Tip:
Be sure to check notation and definitions in any source you examine!
Rather than try to give a formal definition of cluster analysis, we settle
for describing a typical scenario.

Input Objects: S = {s1, s2, . . . , sn}, where n ≥ 3.

Input Attributes: Collection A = {A1, A2, . . . , At} of attributes
that the objects may have. Each Ai could be numerical (real num-
bers), ordinal (numbers having ordinal significance), nominal (numbers
not involved), or binary (presence-absence with 0 for absent and 1 for
present). Attributes taking values in a partially ordered set are best
treated as nominal.

Object-attribute matrix: M = mij is a square array having n
rows and t columns. mij is the value of Aj for si.

Attributes need not all be the same type.

Goal: To find evidence of some inner structure for the data. Often
the structure must be inferred solely on the basis of the attribute data.
This might involve forming a classification of S. This is just a set
T1, T2, . . . , Tk of subsets of S such that S =

⋃
i Ti, and the Ti are not

pairwise comparable. If the Ti are pairwise disjoint (as is almost always
the case), we have a partition.

Example 1.1 S = {a, b, c, d, e, f, g} with T1 = {a, e, g}, T2 = {a, b, c, d},
T3 = {a, b, c, e}, and T4 = {d, f, g} is a classification, while C1 =
{a, b, d}. C2 = {c, e, g}, C3 = {f} is a partition.

Other possibilities might involve forming a nested collection of par-
titions of the data, or representing the data pictorially. Often proceed
through the intermediate step of first defining a numerical measure of
similarity or dissimilarity. There are other types of inputs.

3

Illustrations of cluster algorithms will be based on the CLUSTAN
cluster analysis package written by David Wishart.

2 Similarities and Dissimilarities

No standard terminology or notation. We will provide a commonly
used setting. Different disciplines have their own terminology.

The Input:

Objects S = {s1, s2, . . . , sn}.

Attributes A = {A1, A2, . . . , At}.

Object-Attribute Matrix M = mij.

2a Basic Definitions:

Similarity Measure or Proximity Coefficient :
Mapping p : S × S �→ � such that

p(si, sj) ≥ 0.

p(si, sj) = p(sj, si).

p(si, sj) ≤ p(sh, sh) for all i, j, h.

Idea: The higher the value of p, the more similar the pair of objects,
so the highest value is p(sh, sh). Evidently, p(sh, sh) = p(sk, sk) for all
h, k.

Dissimilarity Measure or Dissimilarity Coefficient (DC):
Mapping d : S × S �→ � such that

d(si, si) = 0.

d(si, sj) ≥ 0.

d(si, sj) = d(sj, si).

Idea: Now higher values of d lead to less similar (i.e., more dissimilar)
pairs of objects. Will work primarily with DCs.

Notation: People often write dij in place of d(si, sj).

4

Definition 2.1 The DC d is called

even if d(si, sj) = 0 =⇒ d(si, sk) = d(sj, sk) for all i, j, k;

definite if d(si, sj) = 0 only when si = sj;

a metric if it is definite and satisfies the triangle inequality

d(si, sj) ≤ d(si, sk) + d(sj, sk) for all i, j, k.

Many of the commonly used DCs are both even and definite.

Remark 2.2 Correspondence between similarities and
dissimilarities:

If p is a similarity measure and d is defined by

d(si, sj) = p(sk, sk) − p(si, sj),

then d is a dissimilarity coefficient.

If d is a dissimilarity coefficient, if κ is a real number that is an
upper bound for d, and if p is defined by

p(si, sj) = κ − d(si, sj),

then p is a similarity measure.

We make no attempt to present an exhaustive list of examples. Rather
we shall just present some commonly used coefficients. Further infor-
mation can be found in any of the standard tests on cluster analysis,
as well as in [12]. The latest text on the market is [9]. It is a thin book
that has many examples, and seems quite clear. Other useful recent
books include [11] and [14]. Other references are mentioned at the end
of the notes.

5

2b Numerical Data:

Let’s try to keep the notation as simple as possible. We just have to
indicate how to compute the dissimilarity or similarity between objects
si and sj. The attributes associated with any object can be thought of
as a vector. So we are just dealing with two vectors. We agree to let

si correspond to the attributes (m1, m2, . . . , mt)
sj correspond to the attributes (n1, n2, . . . , nt)

Squared Euclidean Distance

(m1 − n1)2 + (m2 − n2)2 + · · · + (mt − nt)2

Euclidean Distance
√

(m1 − n1)2 + (m2 − n2)2 + · · · + (mt − nt)2

Manhattan Distance

| m1 − n1 | + | m2 − n2 | + · · · + | mt − nt |

Sup Distance

max { | m1 − n1 |, | m2 − n2 |, . . . , | mt − nt | }

Minkowski p-Metric, where p ≥ 1 is fixed.

(| m1 − n1 |p + | m2 − n2 |p + · · · + | mt − nt |p)1/p

Canberra Metric

| m1 − n1 |
| m1 | + | n1 | +

| m2 − n2 |
| m2 | + | n2 | + · · · +

| mt − nt |
| mt | + | nt |

where one takes the ith term to be 0 if mi = ni = 0.

Bray-Curtis Coefficient

| m1 − n1 | + | m2 − n2 | + · · · + | mt − nt |
| m1 + n1 | + | m2 + n2 | + · · · + | mt + nt |

6

Correlation Coefficient This is one time when summation no-
tation may make things easier to see. Let m = m1+m2+···+mt

t , and
similarly for n. Then we take as the correlation between si and sj

1 −
∣∣∣∣∣

∑
k(mk − m)(nk − n)√∑

k(mk − m)2
∑

k(nk − n)2

∣∣∣∣∣
Note that no distinction is made here between positive and nega-
tive correlations. Not all authors agree.

We mention that many programs allow for weighting of the input at-
tributes.

The choice of an appropriate dissimilarity measure depends largely
on the nature of the data. A safe default is squared Euclidean dis-
tance. Apart from everything else there are some cluster algorithms
that make little sense with other choices of distance. Generally, Man-
hattan distance and Euclidean distance are workable alternatives. If
the input attributes have vastly different scales, then they can either
first be normalized in some way, or correlation can be used as a dis-
similarity, Warning: Normalization does not always lead to a better
clustering.

An example from ecology: This is discussed in [20], p. 278.
Suppose we are comparing abundance of three species at three sites.

Species 1 Species 2 Species 3
Site s1 0 1 1
Site s2 1 0 0
Site s3 0 4 8

Here are the dissimilarities produced by squared Euclidean distance,
Manhattan distance Canberra distance, and the Bray-Curtis coefficient.

d(s1, s2) d(s1, s3) d(s2, s3)
Squared Euclidean 3 58 81

Manhattan 3 10 13
Canberra 3 1.378 3

Bray-Curtis 1 .7143 1

7

This is called the Species Abundance Paradox in [20]. The paradox
arises because under both Manhattan and squared Euclidean distance,
s1 and s2 are the most similar – even though they share no species,
while s2s3 is the least similar pair, though sharing two species. The
Canberra and Bray-Curtis coefficients on the other hand seem better
suited for this particular example. Thus Manhattan and squared Eu-
clidean distance might not be appropriate for this particular data set.
Of course if one is not interested in frequency counts – only in whether
species are present or absent, the entry for site 3 might be 0 1 1 or 0
1/2 1, and this would present a different picture.

Do the various dissimilarity measures produce the same rankings?
Most assuredly not. We illustrate this with a randomly generated
attribute-object table. There are 4 objects and 5 attributes.

A1 A2 A3 A4 A5

s1 13 3 12 20 8
s2 17 20 6 6 9
s3 17 18 5 16 14
s4 10 6 14 3 5

We leave to the reader to verify the values of the indicated dissimilarity
measures.

s1s2 s1s3 s1s4 s2s3 s2s4 s3s4

Canberra 1.803 1.643 1.511 0.816 1.817 2.391
Manhattan 42 36 28 18 36 50
Sup 17 15 17 10 14 13
Squared Euclidean 538 342 320 130 334 524
Minkowski p = 3 19.9 16 17.1 10.4 15.5 17.9
Correlation 0.362 0.871 0.913 0.348 0.967 0.284
Bray-Curtis 0.368 0.286 0.298 0.141 0.375 0.463

Here are the rankings of the values for each dissimilarity coefficient.

8

s1s2 s1s3 s1s4 s2s3 s2s4 s3s4

Canberra 4 3 2 1 5 6
Manhattan 4 3 2 1 3 5
Sup 5 4 5 1 3 2
Squared Euclidean 6 4 2 1 3 5
Minkowski p = 3 6 3 4 1 2 5
Correlation 3 4 5 2 6 1
Bray-Curtis 4 2 3 1 5 6

The message is clear. No mathematical model can tell you which dis-
similarity measure to use. It is essential for the investigator to decide
this, based on the nature of the data.

2c Binary Data

Binary data is presence/absence data. Use 0 to indicate absence and 1
to indicate presence. As in the numerical case, the literature abounds
with dissimilarity coefficients suitable for use with binary data. We re-
fer the reader to the standard texts as well as to [12]. We will content
ourselves with just introducing and discussing a few of the more com-
monly used coefficients. The big decision you must make is whether you
want to get any information from the shared absence of an attribute,
an the effect of replacing an attribute by its negation. We will con-
tent ourselves with just introducing eight commonly used dissimilarity
measures.

Here is the setup. Fix a pair of objects si and sj. Suppose all
attributes are binary. Let

si correspond to (m1, m2, . . . , mt)
sj correspond to (n1, n2, . . . , nt)

Define a, b, c, d as indicated below.

a = count of k such that mk = nk = 1.
b = count of k for which mk = 1 and nk = 0.
c = count of k for which mk = 0 and nk = 1.
d = count of k such that mk = nk = 0.
n = total number of objects.

9

Name Dissimilarity Similarity

(B1) Jaccard b+c
a+b+c

a
a+b+c

(B2) Simple Matching b+c
n

a+d
n

(B3) Russel and Rao b+c+d
n

a
n

(B4) Sokal and Sneath #2 2(b+c)
a+2(b+c)

a
a+2(b+c)

(B5) Rogers and Tanimoto 2(b+c)
a+2(b+c)+d

a+d
a+2(b+c)+d

(B6) Dice b+c
2a+b+c

2a
2a+b+c

(B7) Sokal and Sneath #1 b+c
2a+b+c+2d

2a+2d
2a+b+c+2d

(B8) Yule 2bc
ad+bc

ad−bc
ad+bc

Note that (B4) and (B7) are defined but not named in [26]. Note
also how the presence or absence of d relates (B1),(B2) and (B3); (B4)
and (B5); as well as (B6) and (B7). The Yule coefficient (Yule’s Q
coefficient) is motivated by the study of contingency tables. We shall
not discuss its derivation. Let’s play the same game we played with
the numerical dissimilarities. We ask whether the above dissimilarities
are saying the same thing – at least in an ordinal sense. We start by
looking at some random binary attributes. We take 10 attributes on 5
objects as follows:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

s1 0 1 1 1 0 0 0 0 0 0
s2 1 1 0 1 0 0 0 1 1 0
s3 0 1 1 0 0 0 1 1 1 0
s4 0 1 1 1 1 1 0 1 0 1
s5 1 0 1 1 1 1 1 1 1 0

Here are the rankings of the various dissimilarity coefficients.

10

Object Pairs 12 13 14 15 23 24 25 34 35 45
Jaccard 4 4 3 5 3 4 2 4 2 1

Simple Matching 1 1 1 4 1 3 2 3 2 2
Russel and Rao 4 4 3 4 3 3 2 3 2 1

Sokal and Sneath #2 4 4 3 5 3 4 2 4 2 1
Rogers and Tanimoto 1 1 1 4 1 3 2 3 2 2

Dice 4 4 3 5 3 4 2 4 2 1
Sokal and Sneath #1 1 1 1 4 1 3 2 3 2 2

Yule 2 2 1 6 3 5 4 5 4 7

But notice how something strange has happened. The rankings for rows
1, 4 and 6 are identical, as are the rankings for rows 2, 5 and 7. Is this
always going to be true? Well, here is where the mathematics comes in
handy. It turns out that indeed this will always happen. The numbers
may differ but the ranks remain the same. In his two papers [2] and
[3], F. Baulieu studies binary dissimilarity measures. We just mention
here his main result. He presents natural axioms that guarantee that
his dissimilarity coefficients will all be of the form

d(si, sj) =
b + c

αa + b + c + δd
,

where α > 0 and δ ≥ 0. (Note: Of the binary DCs we introduced, only
(B3) and (B8) are not of this form). He refers to such a dissimilarity
coefficient by the symbol Dα,δ, and here is his main result.

Theorem 2.3 Dα,δ, and Dα′,δ′ induce the same output rankings if and
only if αδ′ = α′δ.

Our observed equalities all follow from this. Indeed, the dissimilarities
of the form Dα,0 all produce the same rankings, as do those of the form
Dα,kα, where k > 0. I do not know of similar results for other classes of
dissimilarity coefficient. I mention though that for fixed θ > 0, Gower
and Legendre [12] consider metric and Euclidean properties of a family
of binary dissimilarity measures of the form

Dθ =
θ(b + c)

a + d + θ(b + c)
or D′

θ =
θ(b + c)

a + θ(b + c)
.

11

If we divide numerator and denominator by θ, we get Dθ = Dα, α and
D′

θ = Dα, 0, where α = 1/θ.

What follows is personal advice. You might find a different story in
the literature. Again the choice of dissimilarity measure must depend
on the nature of the data. If one wishes to ignore matched 0’s, then
Jaccard would seem a reasonable default choice, or possibly Russel and
Rao. If matched 0’s are to be counted then the simple matching coeffi-
cient would be a good default choice. These are all of the dissimilarities
we plan to mention, but there are many others out there waiting to be
chosen. As an example, we mention two dissimilarity formulas

(a + b)(a + c) − a2

(a + b)(a + c)
and

a2d2

(a + b)(a + c)(b + d)(c + d)

of a different type. We shall not mention either of these again. These
and many other coefficients arise from statistical considerations that
are based on other models.

2d Ordinal and Nominal Data

We view ordinal data as numerical where for some reason, one does
not trust the actual values h1, h2, only whether h1 < h2. One way of
dealing with ordinal data is to just rank order the attributes, possibly
normalizing them so that the lowest rank is 0 and the highest is 1.
Another method might involve the use of the Spearman or the Kendall
rank order correlation coefficient. Still another method involves con-
verting each ordinal attribute to a sequence of binary attributes. For
example, if attribute A has three states a1, a2, a3 with a1 < a2 < a3,
one can replace A with three binary attributes B1, B2, B3, and recode
the states of A as follows:

B1 B2 B3

s1 1 0 0

s2 1 1 0

s3 1 1 1

12

Remark 2.4 If a dissimilarity coefficient d has only ordinal signifi-
cance, the distinction implied by the triangle inequality disappears (see
[11], p. 16). This fact is not often mentioned in the literature. It turns
out that there are constants c1, c2 having the property that the DCs
defined by d(a, b) + c1 and

√
d(a, b)2 + c2 each satisfy the triangle in-

equality.

There are at least two ways to deal with nominal data. One can
define d(si, sj) = k/t, where k is the number of attributes in which si

and sj have different states, and t is the total number of attributes.
Another would involve recoding the given attribute into a sequence of
binary attributes. For example, if attribute A has three states red,
green, or blue then one can just create three binary variables which
together specify which state is present. Similar techniques can be used
for attributes whose states form a partially ordered set.

There is no unanimous opinion about how to deal with mixed data.
The issues are discussed in the standard references (e.g., see [11], p. 21,
[17], pp. 32-37, [28], pp. 32-33). Here is a workable strategy. Divide
the attributes into groups An, Ab, Ar, Ao according to whether they are
nominal, binary, numerical or ordinal. Use an appropriate dissimilar-
ity measure on each type of attribute to obtain dissimilarity measure
dn, db, dr, do, and then define

d(si, sj) = wndn(si, sj) + wbdb(si, sj) + wrdr(si, sj) + wodo(si, sj),

where wn, wb, wr, wo are appropriately chosen weight factors.

2e Standardization of attributes and missing values

When attributes are on quite different scales it is often desirable to
standardize them in some way. Beware though that standardization is
not always the right thing to do. Ultimately, you need to check to see
if your output makes sense, and is even meaningful. David Wishart’s
Clustan program offers three techniques for standardization.

Standardize to z-scores: This converts each attribute to zero mean
and unit variance. Warning: If the actual numbers are impor-

13

tant, you need to understand whether a given program is using
the variance or the sample variance.

Standardize variable ranges: each attribute is scaled so its mini-
mum value is 0, and its maximum value is 1.

Rescale to unit range: The entire object-attribute matrix is scaled
so that its minimum value is 0 and its maximum value is 1.

At this point in the lecture. there does not seem to be much else to
say on this issue. Equally, we do not have much to say about missing
values. If you are using a commercial software package you need to
discover how it handles missing values. It may estimate them, or omit
any attribute having a missing value, or omit any value of a dissimilarity
coefficient that involves a missing value. It may profit you to estimate
on your own the needed missing values of attributes. At least you will
understand what is happening.

3 Some clustering algorithms

We begin with some basic terminology. We are trying to determine the
structure of a finite set S of objects. The building block is a partition.
Recall that this is a collection P of nonempty subsets C1, C2, . . . , Ct

of S whose union is S, and having the property that either Ci = Cj

or Ci , Cj have no elements in common; i.e., the sets in a partition are
pairwise disjoint. The sets making up a partition are called clusters.
The partitions of S are partially ordered by the rule P ≤ Q if every
cluster in Q is formed by merging two or more clusters from P . Clearly
the smallest partition of S consists of the singleton subsets of S, and
the largest one has a single class S. These will be denoted respectively
as P0 and PS.

A cluster method usually produces either a single partition P , or a
nested sequence of partitions P1 < P2 < · · · < Pk = PS. Often times
the partitions are indexed by real numbers h1 < h2 < · · · < hk to
indicate the levels at which the Pi arise. These indices are sometimes

14

called splitting levels and sometimes called fusion levels. We examine
first some of the methods that produce indexed sequences of partitions
from a dissimilarity coefficient. So we have

attribute data �→ dissimilarity coefficient �→ partitions
or simply

dissimilarity coefficient �→ partitions.

3a Agglomerative Algorithms

Efficient algorithms can be found in the literature (see [1], [6] or [7],
for example). We outline instead an algorithm that is easy to visualize
but not terribly efficient. It is an example of an agglomerative cluster
algorithm in the sense that it starts with singletons, and successively
merges clusters to form a nested sequence of partitions

P1 < P2 < · · · < Pk = PS.

1. INPUT dissimilarity coefficient d with image 0 = h0 < h1 < · · · <
hu. The initial clusters are singletons.

2. SET levnum = the lowest level at which a nontrivial pair of objects
has a value.

3. Merge the first pair of objects you come to that have DC value
levnum.

4. Change the data set to reflect the merger.

5. Use some method to determine the distance between the newly
formed cluster and all others.

6. If a pair of clusters has distance levnum, go to Step 3.

7. Record the output clusters at this level. The dataset now becomes
the existing set of clusters, and the DC is the revised DC on these
clusters.

8. If all objects are clustered in a single cluster, exit.

9. Go to Step 2.

15

This will all best be illustrated with an example. The various methods
we shall examine all relate to the various implementations of Step 5.

Example 3.1 We begin with a linear data set S = {s1, s2, s3, s4, s5},
where si = i for 1 = 1, 2, 3, 4, 5. Our DC then is defined by d(x, y) =
|x − y|. In tabular form, this produces

d s2 s3 s4 s5

s1 1 2 3 4
s2 1 2 3
s3 1 2
s4 1

All right. This is admittedly an artificial example. One can argue that
there is no structure to be discovered here. But let’s see what happens.
Single linkage clustering is a clustering method that merges clusters
X, Y at the first level at which there is a link between them. Indeed, it
proceeds by defining the dissimilarity between the merged cluster XY
and cluster Z as d(XY, Z) = min{d(X, Z), d(Y, Z)}. Single linkage
clustering merges everything into a single cluster at level 1.

We turn next to a cluster method called complete linkage cluster-
ing. This is an agglomerative method that only merges clusters when
all possible links have been made between them. This amounts to
defining the dissimilarity between a merged cluster XY and cluster Z
as d(XY, Z) = max{d(X, Z), d(Y, Z)}. For the example at hand, we
first merge s1 and s2 to form the new cluster s1s2. We now need to
determine the dissimilarity between s1s2 and the remaining clusters.
A typical calculation says that d(s1s2, s3) = max{d(s1, s3), d(s2, s3)} =
max{2, 1} = 2. This then produces

s3 s4 s5

s1s2 2 3 4
s3 1 2
s4 1

16

The next merger would be s3 and s4 to form s3s4. The updated
dissimilarity is

s3s4 s5

s1s2 3 4
s3s4 2

All possible mergers have now been made at level 1, so the level 1
output is the partition whose classes are s1s2, s3s4, s5. The next level
is 2, so we form the cluster s3s4s5 at level 2. The updated DC is

s3s4s5

s1s2 4

A final merger takes place at level 4.

There are at least four ways to represent the resulting output.

Dissimilarity coefficient: The idea here is to form the output DC
by defining dcl(x, y) to be the lowest level at which x and y are
merged.

dcl s2 s3 s4 s5

s1 1 4 4 4
s2 4 4 4
s3 1 2
s4 2

Clustan Version: Just indicate the cluster mergers and the levels at
which they occur. The table indicates that s1 and s2 merge at
level 1. Denote the new cluster as s1. Then merge s3 and s4 at
level 1 with the new cluster called s3. Then merge s3 and s5 at
level 2, calling the new cluster s3. The final merger is at level 4,
and merges s1 and s3.

First Second Fusion
Cluster Cluster Value

s1 s2 1.000
s3 s4 1.000
s3 s5 2.000
s1 s3 4.000

17

List the partitions: At each level just list the non–singleton clusters.

Level Nonsingular Clusters
1 {s1, s2}, {s3, s4}
2 {s1, s2}, {s3, s4, s5}
4 {s1, s2, s3, s4, s5}

Graphical Display: Either a vertical or horizontal tree can be used.
Sometimes a scale is included to indicate the level at which each
partition arises. This will not be done in these notes.

Figure 1: Complete Linkage Clustering on 5 Points

Single linkage and complete linkage clustering represent extremes.
Single linkage tends to produce long stringy clusters, while complete
linkage is such a harsh criterion that it tends to produce a few very
compact clusters. Other techniques try to reach some sort of com-
promise between these criteria. One such technique is called weighted
average linkage clustering (often abbreviated WPGMA in the liter-
ature). It follows the same format as complete linkage except that

18

the update for the distance between a merged cluster XY and clus-
ter Z becomes the average of d(X, Z) and d(Y, Z). In other words,
d(XY, Z) = 1

2

(
d(X, Z) + d(Y, Z)

)
.

We illustrate WPGMA with the same example. The output for
level 1 is identical with that of complete linkage, but the updated dis-
similarity matrix changes.

s3s4 s5

s1s2 2 3.5
s3s4 1.5

As in complete linkage we now form the cluster s3s4s5 at level 1.5, and
calculate the upgraded matrix.

s3s4s5

s1s2 2.75

Here is the dissimilarity output for weighted average linkage clustering.

dwpgma s2 s3 s4 s5
s1 1 2.75 2.75 2.75
s2 2.75 2.75 2.75
s3 1 1.5
s4 1.5

Finally we have a technique called unweighted pair group analysis
(abbreviated UPGMA). The update formula for d(XY, Z) is given by

d(XY, Z) =
|X|

|X| + |Y |d(X, Z) +
|Y |

|X| + |Y |d(Y, Z).

It represents the average dissimilarity between an object in X ∪ Y and
an object in Z. It may seem rather strange to call this an unweighted
algorithm since there are clearly weighting constants involved. Indeed,
some authors reverse the roles of UPGMA and WPGMA. The term
“unweighted” refers to the role of the individual terms d(x, z), d(y, z)
with x ∈ X, y ∈ Y and z ∈ Z. The output from the UPGMA algorithm

19

is identical to WPGMA except that d(s1s2, s3s4s5) is 2.50 instead of
2.75.

The issue of ties: Before leaving this data set, let’s say a word
about ties. The DC for this data set shows dissimilarity 1 between
the pairs (s1, s2), (s2, s3), (s3, s4) and (s4, s5) and at level 1 forms the
clusters s1s2 and s3s4, If the data were entered in the reverse order,
then at level 1 we would form s5s4 and s3s2. Do we really want the
cluster output to depend on the order in which the data is keyed into
the computer? Most software developers do not see this as a problem.
If you are using commercial software, you need to find out (if you can)
how it handles tied data. At the very least you should experiment with
reversing the order in which the data is entered to see if ties present a
problem. The CLUSTAN package deals with this by telling you where
there are ties and allowing you to reverse the order in which the ties
are considered.

Jardine and Sibson [16] have a rather different solution to the prob-
lem. They just make all possible mergers at each level. This of course
changes the clustering routine and the corresponding outputs. For ex-
ample, the Jardine-Sibson version of complete linkage clustering would
merge all the objects into a single cluster at level 1. Though your in-
structor likes their idea, the Jardine–Sibson technique has not caught
on, so little further mention will be made of it. The interested reader
can consult Figures 3, 4 and 5 for a more complicated example of the
effect of ties.

Example 3.2 Here perhaps is a more interesting example. It is taken
from [27]. Note though that we have only taken eight points from the
sixteen considered in [27]. So the data consists of eight points in the
Euclidean plane. We will change our format for referring to points and
take as our set S the points {a, b, c, d, e, f, g, h}, and represent dissimi-
larities by δ rather than d. This is admittedly an artificial example, but
it is nice to work with because of its natural geometric representation.
To see the issues, try looking at Figure 2, and see if you can find a
natural division into three clusters.

20

a (0,4) c (1,5) e (3,3) g (2,1)
b (0,3) d (2,4) f (2,2) h (1,0)

a

b

c

d

e

f

g

h

Figure 2: Eight point example

We present the DC formed using squared Euclidean distance, the
intermediate DC formed at level 1 after the clusters ab and fg have
formed, and finally the output DC. This is not terribly informative
and is typical of the defects associated with single linkage clustering.
There is a tendency toward forming long stringy clusters which group
together objects that are only remotely related.

21

δ b c d e f g h

a 1 2 4 10 8 13 17
b 5 5 9 5 8 10
c 2 8 10 17 25
d 2 4 9 17
e 2 5 13
f 1 5
g 2

Single Linkage:

c d e fg h

ab 2 4 9 5 10
c 2 8 10 25
d 2 4 17
e 2 13
fg 2

Fsl(δ) b c d e f g h

a 1 2 2 2 2 2 2
b 2 2 2 2 2 2
c 2 2 2 2 2
d 2 2 2 2
e 2 2 2
f 1 2
g 2

Complete Linkage: We turn next to complete linkage clustering
with the same example.

c d e fg h

ab 5 5 10 13 17
c 2 8 17 25
d 2 9 17
e 5 13
fg 5

cd e fg h

ab 5 10 13 17
cd 8 17 25
e 5 13
fg 5

At level 5 the clusters abcd and efg are formed. The updated dissimi-
larity matrix is

efg h

abcd 17 25
efg 13

Next, efg merges with h at level 13; the final merger takes place at
level 25. Here is the output DC.

22

Fcl(δ) b c d e f g h

a 1 5 5 25 25 25 25
b 5 5 25 25 25 25
c 2 25 25 25 25
d 25 25 25 25
e 5 5 13
f 1 13
g 13

Figure 3: Complete Linkage Clustering on Eight Point Example

Figure 4: Complete Linkage Clustering with Order Reversed

23

Please compare Figures 3 and 4 to see how ties can dramatically affect
a cluster output. The data sets were identical for both figures, squared
Euclidean distance was the DC, and Complete Linkage the cluster-
ing algorithm. The only difference was the order in which the data
was entered into the computer. Figure 5 illustrates the Jardine-Sibson
method of dealing with ties. It may be illuminating to just compare
the manner in which d and e are clustered in the Figures.

Figure 5: Jardine-Sibson Version of Complete Linkage Clustering

24

UPGMA: Here next is the UPGMA algorithm.

c d e fg h

ab 3.5 4.5 9.5 8.5 13.5
c 2 8 13.5 25
d 2 6.5 17
e 3.5 13
fg 3.5

cd e fg h

ab 4 9.5 8.5 13.5
cd 5 10 21
e 3.5 13
fg 3.5

cd efg h

ab 4 8.83 13.5
cd 8.33 21
efg 6.67

efg h

abcd 8.58 17.25
efg 6.67

The cluster efgh is formed at level 6.67, and the final merger takes
place at level 10.75. Here is the output DC.

Fupgma(δ) b c d e f g h

a 1 4 4 10.75 10.75 10.75 10.75
b 4 4 10.75 10.75 10.75 10.75
c 2 10.75 10.75 10.75 10.75
d 10.75 10.75 10.75 10.75
e 3.5 3.5 6.67
f 1 6.67
g 6.67

WPGMA: Now we turn to WPGMA. Up to and including level 2,
the output is identical to that of UPGMA. At level 2, we have clusters
ab, cd, e, fg, h and we form efg at level 3.5. We need to update the
dissimilarity matrix.

25

cd efg h

ab 4 9 13.5
cd 7.5 21
efg 8.25

efg h

abcd 8.25 17.25
efg 8.25

h

abcdefg 12.75

Here now is the final DC.

Fupgma(δ) b c d e f g h

a 1 4 4 8.25 8.25 8.25 12.75
b 4 4 8.25 8.25 8.25 12.75
c 2 8.25 8.25 8.25 12.75
d 8.25 8.25 8.25 12.75
e 3.5 3.5 12.75
f 1 12.75
g 12.75

UPGMC and WPGMC: These cluster methods have a natural
geometric interpretation if one thinks of the objects as being points in
an n-dimensional Euclidean space. The distance between two clusters is
taken to be the distance between their centroids. The WPGMC method
upgrades the centroid of a merged cluster XY as the centroid of the
two centroids for X and Y , whereas UPGMC computes the centroid of
all x ∈ X and that of all y ∈ Y . UPGMC is sometimes called centroid
clustering, while WPGMC is called the median method. These can all
profitably be regarded as special cases of a general clustering strategy
called flexible clustering which is due to Lance and Williams [18]. This
is essentially just a formula for δ(XY, Z) when cluster X and Y are
merged. More general versions exist, but we shall discuss a version
that involves constants α

X
, α

Y
and β:

δ(XY, Z) = α
X
δ(X, Z) + α

Y
δ(Y, Z) + βδ(X, Y).

For WPGMC we take α
X

= α
Y

= 1/2 with β = −1/4. For UPGMC,
we take

α
X

=
|X|

|X| + |Y | , α
Y

=
|Y |

|X| + |Y | , β =
−|X||Y |

(|X| + |Y |)2 .

26

Warning: The geometric interpretation of these update formulas is
only valid when used with squared Euclidean distance. A detailed
discussion of how the formulas are derived can be found in [17], pp.
227–230. Despite the attractive geometric interpretation, they have
a flaw called reversals. It sometimes happens that when clusters X,
Y are merged, the distance δ(XY, Z) < min{δ(X, Z), δ(Y, Z)}. This
makes the results a little hard to interpret. To see how this can hap-
pen, imagine a triangle ABC with vertices at A(−.5, 0), B(.5, 0), and
C(0, K), where 3/4 < K2 < 1. Using squared Euclidean distance, then
δ(A, B) = 1, and δ(A, C) = δ(B, C) = K2 + 1/4 > 1. The cluster AB
is formed and its centroid is at the origin. Then δ(AB, C) = K2 < 1
so we have a reversal. All of this is depicted in Figure 6, where D has
coordinates (0,1) and E has coordinates (0,

√
3/2), so triangle ABE

(not depicted) is an equilateral triangle.

A B

C

O

D

E

Figure 6: Example of a Reversal

Examples of these clustering methods may be found in Figures 12
and 13.

27

Ward’s Method: (Incremental sum of squares) This method
illustrates a class of agglomerative cluster methods that seek at each
stage to optimize some external objective function. In this case it is
the within cluster sum of squares of the pairwise distances. The basic
assumption here is that the underlying objects are viewed as vectors in
a suitable Euclidean vector space. These ideas have their motivation in
the algorithms for Analysis of Variance. Though this is most certainly
not how Ward [30] viewed the problems in his original work, it turns out
that the algorithm may be viewed as a special case of flexible clustering
with

α
X

=
|X| + |Z|

|X| + |Y | + |Z| , α
Y

=
|Y | + |Z|

|X| + |Y | + |Z| , β =
−|Z|

|X| + |Y | + |Z| .

Any of the standard texts on cluster analysis should have a treatment
of this method. One problem with algorithms of this type is that
optimizing an external criterion at level h might not lead to optimality
at a level beyond h.

Flexible Clustering We have mentioned flexible clustering several
times. Most texts carry some sort of discussion of the subject. One such
source is [11], p. 79. We summarize what we have mentioned. Suppose
we are merging clusters X and Y , and want the dissimilarity between
the new clusters XY and cluster Z. Letting n1 = |X|, n2 = |Y |,
n3 = |Z|, and n = n1 + n2 + n3, we have

αi(i = 1, 2) β

WPGMA 1
2 0

UPGMA ni

n1+n2
0

WPGMC 1
2 −1

4

UPGMC ni

n1+n2

−n1n2
(n1+n2)2

Ward ni+n3
n

−n3
n

Recall here that d(XY, Z) = α1d(X, Z) + α2d(Y, Z) + βd(X, Y)

28

3b Divisive Algorithms

Divisive cluster algorithms proceed from the top down. They start with
a single cluster and divide this into a number (often 2) of subclusters,
and then successively divide the subclusters to form a nested sequence
of partitions. Since one is often primarily interested in the higher level
clusters one can argue that perhaps these techniques might be superior
to the agglomerative algorithms. But like the agglomerative algorithms
these are just stepwise optimal and there is no guarantee that they will
be globally optimal. They also suffer from issues of computational
complexity. The problem of looking at all possible divisions of an n
element set into two classes can be shown to be NP-complete, so one
is either limited to relatively small data sets, or one must use some
heuristic to find “good” partitions. One such method might involve
using a single attribute to make the division. This type of cluster
method is called monothetic and is described in [11], pp. 130-134. The
obvious problem is that clusters are being formed on the basis of a single
attribute, while the desired clusters might be multivariate in nature.

Other techniques involve the optimization of certain objective func-
tions. Typical functions for a cluster A include

diameter of A: max{d(x, y) : x, y ∈ A}, and
within cluster sum of A:

∑{d(x, y) : x, y ∈ A}
Polynomial time algorithms exist to find a partition that minimizes
certain objective functions for bipartitions. Among them are the max-
imum of the two cluster diameters and their sum. References are pro-
vided in [11]. We shall content ourselves with illustrating the general
ideas with the data from Example 3.2. As in our earlier calculations,
we use squared Euclidean distance as the DC. Since this is an 8 element
set there are 127 partitions to consider. Indeed, for an n element set
there are 2n−1 − 1 distinct partitions with two classes. With such a
small data set it is easy to do an exhaustive search., and this is pre-
cisely what we did. We used five criteria as described in the next table.
The table entries represent the rank of the relevant statistic.

29

abcdef abcde abcd acdefg acde
gh fgh efgh bgh bfgh

sum of sums 9 2 1 6 5
max of sums 24 6 1 9 2

sum of diameters 1 2 4 6 6
max of diameters 1 1 2 1 1
within cluster DC 4 2 1 7 3

Note how the different criteria produce different optimal bipartitions.
So there is a moral lesson here. Computer heuristics need not produce
the best results.

3c Iterative relocation methods

We only discuss one illustrative method here: k-means clustering. The
standard texts all treat this, and the commercial software packages
should all have a version. We shall discuss some of what the Clustan
program does. The idea is to produce a single partition having k classes.
Any dissimilarity measure can be used, but the motivation for what is
done assumes squared Euclidean distance. The program can either
be viewed as the initial creation of k clusters or the refinement of a
k cluster output that came from some other algorithm. The input is
an n element data set with t numerical attributes and a dissimilarity
measure.

Step 1. Choose k seed points. These are the starting points for the
procedure. They can either be imported from some other algo-
rithm, randomly chosen, arbitrarily chosen, or perhaps just taken
to be the first k objects in the data set. They need not even be
actual data points.

Step 2. Assign each object to the seed to which it is closest.

Step 3. Recompute the k cluster centers.

Step 4. Iterate the procedure until it either converges or the count
exceeds some threshold. In Clustan the default is 10 iterations,
though this can be reset.

30

It should be mentioned that there are ways to check for outliers, and
these are placed in an unclassified residue. k-means has the advantage
that it can be used on very large data sets; its disadvantage is the extent
to which outputs are influenced by the initial choice of seed points.

We illustrate this with the data from Example 3.1. Recall that
si = i for i = 1, 2, 3, 4, 5 and use squared Euclidean distance as the
DC. Let’s take for initial seeds 1 and 2. This leads to the two clusters
A = {1} and B = {2, 3, 4, 5}. The cluster centers are 1 and 3.5,
thus producing clusters A = {1, 2} and {3, 4, 5}. At the next stage the
cluster centers are 1.5 and 4, and stability has been achieved. Of course
had we chosen 4 and 5 as the initial seeds, the output would have been
{1, 2, 3} and {4, 5}. When applied to the data from Example 3.2, the
k-means algorithm produces the bipartition {a, b, c, d}, {e, f, g, h}.

4 A model for clustering algorithms

This material is based on ideas of Jardine and Sibson [16], though the
presentation will look rather different from theirs. The goal here is
to show how mathematics can help in understanding what it is that
cluster algorithms are doing, and equally how it can prove misleading
if it is not properly used. A reader uncomfortable with mathematical
formalism may safely just omit this section. The first order of business
is to identify the nature of the output of a clustering algorithm. First
we need some mathematical machinery.

A relation on S is a set R of ordered pairs. We sometimes write
xRy in place of (x, y) ∈ R. The relation R is

reflexive if xRx for all x ∈ S;

symmetric if xRy implies yRx;

transitive if xRy together with yRz implies xRz.

Relations that are reflexive, symmetric and transitive are called equiv-
alence relations. Partitions are naturally associated with equivalence
relations. For E an equivalence relation, the associated partition is

31

given by {[x] : x ∈ E}, where [x] = {y ∈ S : xEy}. [x] is called the
equivalence class determined by x.

Relations on S are partially ordered by the rule R1 ⊆ R2 if xR1y
implies xR2y. The smallest equivalence relation is then ∆ = {(x, x) :
x ∈ S}, and the largest is S × S.

For a given DC d, and for any h ≥ 0, we define Td(h) = {(a, b) :
d(a, b) ≤ h}. Each Td(h) is a reflexive symmetric relation. The dis-
similarity d is an ultrametric if every Td(h) is an equivalence relation.
This is clearly equivalent to the validity of the ultrametric inequality:

DCU d(a, b) ≤ max{d(a, c), d(b, c)} for all a, b, c ∈ E.

If a clustering algorithm produces partitions at each level, and if we
define u(a, b) to be the first level at which a and b are first clustered,
then u is an ultrametric (often called the cophenetic coefficient) from
which the output can be recaptured. Of course we have been doing this
all along, but in a more informal manner. Because of this, a cluster
method may be viewed as a transformation of DCs into ultrametrics (or
more generally into some other kind of DC). We list a few reasonable
properties and then look at their consequences.

(A1) F = F ◦ F . This says that F is idempotent.

(A2) If d′ is obtained from d by relabelling E, then F (d′) should be
obtained from F (d) by that same relabelling.

(A3) If d′ = αd (α > 0), then F (d′) = αF (d).

(A3′) If d′ = θd for any monotone transformation θ of [0, ∞), then
F (d′) = θF (d).

(A4) F leaves every ultrametric fixed.

(A4′) The image of F is the set of ultrametrics.

(A5) F is isotone in that d ≤ d′ implies that F (d) ≤ F (d′).

(A6) If we use Euclidean distance as the metric on DCs, then F is
continuous.

32

Though these axioms seem reasonable, when put together they seem
much too strong.

(A1) This one is not at all obvious. The idea is that F has transformed
a DC into a desired form. Once there, F should not alter the DC.
But one can imagine algorithms that take several iterations before
the desired output is reached.

(A2) Innocent looking but strong. The easiest implementation is at
each level to merge all pairs that meet the clustering criterion.

(A3) Very innocent. If the scale of measurement is changed, this
should not affect the output. Note that says nothing about chang-
ing to a logarithmic scale! It only involves linear scale changes.

(A3′) This is called monotone equivariance in [16], and represents a
form of ordinal clustering.

(A4) This seems reasonable if we accept (A1).

(A4′) Many algorithms implicitly assume this.

(A5) This looks reasonable since d ≤ d′ means that d(a, b) ≤ d′(a, b)
for all a, b ∈ E. But it has dramatic consequences. Indeed, the
consequences are so strong that one may very well question the
validity of the axiom.

(A6) The idea here is that small errors in the input should not trans-
late into large output errors. This axiom is subtle.

Theorem 4.1 There is exactly one cluster algorithm that satisfies (A1),
(A4′), and (A5). It is called single linkage clustering, and it is defined
by taking for output at each level the transitive closure of Td(h). The
remaining axioms are all also satisfied.

Theorem 4.2 If F satisfies (A1), (A4) and (A5), and if Z is the
image of F , then for any DC d, F (d) = max{u ∈ Z : u ≤ d}.
Theorem 4.3 If F satisfies (A3) and (A5), then F is continuous at
all definite DCs. This is the strongest possible result.

33

Theorem 4.4 The following conditions are equivalent:

(1) F satisfies (JS3′) and is continuous.

(2) F satisfies (JS3′) and is right continuous.

(3) F (θd) = θF (d) for every 0-preserving monotone mapping on [0, ∞).

(4) There exists a mapping γ on the binary relations such that

TF (d) = γ ◦ Td.

If F satisfies (A3) and (A5), it is in fact true that F is left contin-
uous in the sense that if limn dn = d with dn ≤ d, then limn F (dn) =
F (d). Rather surprisingly, right continuity is equivalent to continuity.
The connection with ordinal considerations can be motivated by the
fact that for any DC d, there corresponds a positive constant ε such that
whenever ∆(d, d′) < ε, then d(a, b) < d(x, y) =⇒ d′(a, b) < d′(x, y).
Here ∆(d, d′) =

∑{(d(a, b) − d′(a, b))2 : a, b ∈ E}. If we define d � d′

to mean that d(a, b) < d(x, y) =⇒ d′(a, b) < d′(x, y), it seems reason-
able to say that continuous cluster functions should have the property
that d � d′ =⇒ F (d) � F (d′). But these are precisely the cluster func-
tions that are suitable for use with ordinal data, since they have the
property that if d(a, b) < d(x, y) is equivalent to d′(a, b) < d′(x, y), the
same would be true for F (d) and F (d′). It would seem that continuity
is somewhat a secondary condition implied by other more basic ordinal
considerations. A key desirable condition is that a cluster algorithm
be stable under a few reversals of order. Such a reversal means that
one has d(a, b) < d(x, y), when in reality the input should have been
d(a, b) > d(x, y).

Much more can be said about continuity. Some details may be
found in [5]. As a historical note, the Jardine-Sibson axioms only al-
lowed single linkage clustering as the acceptable method. Continuity
was the assumption people criticized. But continuity is implied by the
remaining axioms, it is curious that a condition that involves numbers
being close to each other should be implied by ordinal conditions.

34

Jardine and Sibson are not the only authors who have introduced
properties that cluster functions may enjoy. Fisher and Van Ness [10]
introduced admissibility conditions. They call a cluster function mono-
tone admissible if applying a monotone mapping θ to d does not change
any of the partitions formed by F (d). There is an obvious connection
to axiom (A3′). These and other issues are discussed in [11], pp. 98–
100, where additional references may also be found. Other ideas may
be found in [18].

5 Validation

A cluster algorithm will always produce clusters; How do we know
that the clusters are not artifacts of the algorithm? This is not an
easy question to answer. Related to this is the issue of when to stop.
How many clusters are there? If a hierarchical tree is produced, what
levels of the tree are significant? Most text books on clustering have
some sort of discussion, but there is no definitive theory. Indeed, the
literature has many lengthy discussions on the subject. Milligan [22]
analyzes 30 different measures of this type by means of Monte Carlo
methods. We just do not have the time to get into this, and there is
no definitive theory. Indeed, though others may disagree, my opinion
is that the techniques have little sound statistical basis, though they
may be motivated by statistical considerations. For these reasons, we
are just going to take a quick look at a few criteria. We will illustrate
the criteria with data from Example 5.1. This example is from the
Clustan distribution package and consists of an analysis of milk from
25 species of mammal. The cluster methods are single linkage SL,
complete linkage CL, WPGMA , UPGMA, WPGMC, and UPGMC.
This is for illustrative purposes only, and one should be cautious about
drawing conclusions.

Gowers’s statistic: This is just the sum of the squares of the differ-
ences between the input and the output DCs. It is a measure of
the distance between the two DCs when they are considered to be
vectors.

35

Cophenetic Correlation Coefficient (CPCC): This is highly rec-
ommended in [27]. The name is somewhat historical, but we are
looking only at the ordinary product moment correlation between
the input and output dissimilarities. Though it gives an indication
of goodness of fit, it is difficult to calibrate because we are dealing
with unknown distributions of the data.

The Goodman-Kruskal γ-Coefficient: Suppose the input DC is d
and the output is u. Ideally, we want d(a, b) < d(x, y) to imply
failure of u(a, b) > u(x, y). This coefficient measures the extent
to which this is true. Let S be the set of all pairs ab, xy of pairs
of objects such that d(a, b) < d(x, y). The pair ab, xy is called
concordant if u(a, b) < u(x, y) and discordant if u(a, b) > u(x, y).
Ties are ignored. The statistic is then defined by

γ =
S+ − S−
S+ + S−

,

where S+ denotes the number of concordant pairs and S− the num-
ber of discordant pairs. It can be used to compare the effectiveness
of cluster methods operating on the same input data.

SL CL WPGMA UPGMA WPGMC UPGMC
Gower 1713 1635 566 633 2810 1059

Correlation .69 .59 .76 .74 .76 .80
Gamma .62 .72 .80 .79 .80 .80

Whatever else one may conclude, this shows that these three statistics
give somewhat different answers. As we said earlier, they should only
be used for guidance.

We turn now to the issue of the stopping point. How many clusters
are there? The Clustan software has two stopping rules, both based on
the papers [24, 25]. There is also a new algorithm under development.
This we now describe.

The Clustan Algorithm: This is currently under development by
David Wishart. Here is how one version of it works. We are

36

given a data matrix and use squared Euclidean distance as the
DC. A cluster algorithm is applied. One wants to test the clusters
for significance. Each column of the data matrix is randomly per-
muted and a new DC is computed. The fusion level for the output
is computed corresponding to each number of clusters This is re-
peated a fixed number of times and a mean and standard deviation
are computed for the fusion level corresponding to a k-cluster par-
tition. This is compared with the output at hand. If the current
output at level k is more than 1 standard deviation beneath the
mean it is deemed significant. The randomization of the attribute
columns effectively destroys any pattern that might be in the data,
so this gives us a baseline for comparing the current clustering with
random data. This will be clarified with a concrete example. At
the moment, the stopping point is the level at which the differ-
ence between the observed data and the randomized data are a
maximum.

Within and Between Cluster Dissimilarities There are many vari-
ations on the theme we are about to play. Suppose we have an
input DC d and an output ultrametric u. At level h, u(h) de-
termines a partition of the underlying set E by means of clusters
C1, C2, . . . , Ck. The average within-clusters DC is the mean of the
set of all d(x, y) such that u(x, y) ≤ h. The average between-
clusters DC is the mean of all d(x, y) such that u(x, y) > h. The
underlying goal of a cluster algorithm is to group together points
for which d(x, y) is small and separate points for which d(x, y) is
large. Unfortunately this is somewhat of a balancing act. Some-
times decreasing the mean within-cluster distance also decreases
the mean between-cluster distance. Different authors have differ-
ent ways of dealing with this issue.

Local Version of Goodman-Kruskal We want every within cluster
distance to be smaller than every between cluster distance. Look
at all pairs ab, xy such that a, b are in the same cluster and x, y are
in different clusters. Call the pair (ab, xy) concordant if d(a, b) <
d(x, y) and discordant if d(a, b) > d(x, y). Ignore ties, and define

37

S+, S− as above. The γ statistic is defined as above, but now we
have a value for each fusion level.

We will provide a numerical illustration of all this in connection
with Example 5.1.

Example 5.1 This example is taken from the Clustan distribution
package, and originally appeared in [13]. It classifies mammals milk
from 25 different mammals on the basis of five attributes: water, pro-
tein, fat, lactose, ash. The attributes are standardized so that they
are represented by Z-scores. The dissimilarity is squared Euclidean
distance. We will just present the various tree representations. These
can be found at the end of the paper. The example is only presented
to illustrate the algorithms presented in the section on validation. Of
course it also vividly illustrates the fact that different algorithms pro-
duce different clusterings.

The stopping rules will be illustrated for Figure 11. Table 5.1 shows
the statistics relative to the 2, 3, 4, 5, 6 cluster levels. These atatistics
should only be used for guidance. There is nothing terribly persuasive
about them. The Clustan statistics (not illustrated here) all indicate
stopping at the level with 3 clusters. In the table, there are 5 columns
having the following meanings: num represents the number of clusters,
fusion the corresponding fusion level, within the mean within cluster
DC, between the mean between cluster DC , ratio the ratio of the mean
between cluster levels and the within cluster levels, and finally we have
gamma which represents the local version of the Goodman-Kruskal γ-
statistic. Table 5.1 also seems to indicate a stopping level of 3 clusters.

num fusion within between ratio gamma
6 0.651 0.228 2.42 10.68 0.892
5 0.858 0.251 2.44 9.72 0.874
4 0.921 0.411 2.89 7.03 0.857
3 1.329 0.528 3.10 5.86 0.826
2 2.976 1.419 5.21 3.67 0.859

Table 5.1: Stopping rules

38

We close by illustrating the Clustan algorithm for the same data
as that used for Table 5.1. It appears in Figure 7. The Figure will be
explained during the lecture.

Figure 7: Demonstration of CLUSTAN Validate Algorithm

39

References

[1] M. R. Anderberg, Cluster Analysis for Applications, Academic
Press, 1973.

[2] F. B. Baulieu, A Classification of Presence/Absence based Dissim-
ilarity Coefficients, J. of Classification, 6, pp. 233-246, 1989.

[3] F. B. Baulieu, Two Variant Axiom Systems for Presence/Absence
based Dissimilarity Coefficients, J. of Classification, 14, pp. 159-
170, 1997.

[4] H. T. Clifford and W. Stephenson, An Introduction to Numerical
Classification, Academic Press, New York, 1975.

[5] G. D. Crown and M. F. Janowitz, The Controversy About Conti-
nuity in Clustering Algorithms, DIMACS Technical Report 2002-
004, Piscataway, NJ, 2002.

[6] W. H. E. Day and H. Edelsbrunner, Efficient algorithms for ag-
glomerative hierarchical clustering methods, J. of Classification,
1, pp. 7–24, 1984.

[7] W. H. E. Day and H. Edelsbrunner, Investigations of proportional
link linkage clustering methods, J. of Classification, 2, pp. 239–
254, 1985.

[8] B. S. Duran and P. L. Odell, Cluster Analysis. A Survey., Lecture
Notes in Economics and Mathematical Systems 100, Springer-
Verlag, Berlin, 1974.

[9] B. Everitt, S. Landau, and M. Leese, Cluster Analysis (4th ed.),
Arnold, London, 2001.

[10] L. Fisher and J. W. Van Ness. Admissible clustering proceedures,
Biometrika 58, PP. 91–104, 1971.

[11] A. D. Gordon, Classification (2nd ed.), Chapman & Hall, London,
1999.

40

[12] J. C. Gower and P. Legendre, Metric and Euclidean Properties of
Dissimilarity Coefficients, J. of Classification, 3, pp. 5-48, 1986.

[13] J. A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.

[14] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cliffs 1988.

[15] M. F. Janowitz, Continuous L-Cluster Methods, Discrete Applied
Mathematics 3 (1981), 107–112.

[16] N. Jardine and R. Sibson, Mathematical Taxonomy, Wiley, New
York, 1971.

[17] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data. An
Introduction to Cluster Analysis, Wiley, New York, 1990.

[18] G. Lance and W. T. Williams, A general theory of classificatory
sorting strategies: II, Computer Journal 10, pp. 271-277, 1967.

[19] I. G. Lerman, Les bases de la Classification Automatique,
Gauthier-Villars, Pairs, 1970.

[20] P. Legendre and L. Legendre, Numerical Ecology, Second English
ed., Elsevier, Amsterdam, 1998.

[21] J. E. Mezzich and H. Solomon, Taxonomy and Behavioral Science,
Academic Press, New York, 1980.

[22] G. W. Milligan, A Monte Carlo study of thirty internal crite-
rion measures for cluster analysis, Psychometrika 46, pp. 187-199,
1981.

[23] B. Mirkin, Mathematical; Classification and Clustering, Kluwer,
Dordrecht, 1996.

[24] R. Mojena, Hierarchical grouping methods, The Computer Journal
20, pp. 359–363, 1977.

41

[25] R. Mojena and D. Wishart, Stopping rules for Ward’s cluster-
ing method, in Proceedings of COMPSTAT 1980, Physica-Verlag,
Würzburg, pp. 426–432, 1980.

[26] R. R. Sokal and P. H. A. Sneath, Principles of Numerical Taxon-
omy, Freeman, San Francisco, 1963.

[27] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, Freeman,
San Francisco, 1973.

[28] H. Späth. Cluster Analysis Algorithms for data reduction and clas-
sification of objects, Ellis Horwood, Chichester, 1980.

[29] J. Van Ryzin (ed.) Classification and Clustering, Academic Press,
New York, 1977.

[30] J. H. Ward, Jr., Hierarcical grouping to optimize an objective func-
tion, Journal of the American Statistical Association 58, pp. 236–
244, 1963.

42

Figure 8: Single Linkage Clustering on Mammal Data

43

Figure 9: Complete Linkage Clustering on Mammal Data

Figure 10: UPGMA Clustering on Mammal Data

44

Figure 11: WPGMA Clustering on Mammal Data

Figure 12: UPGMC Clustering on Mammal Data

45

Figure 13: WPGMC on Mammal Data

A Appendix

The CSNA web site has a number of references to commercial software,
as does [9], pp. 197-207. In these notes we used Clustan. Their web
site is

http://www.clustan.com,

while the CSNA site is at

http://www.pitt.edu/˜csna

A number of text books are mentioned in the references:
[1, 4, 8, 9, 11, 13, 14, 16, 17, 19, 20, 21, 23, 26, 27, 28, 29]

46

	Table of Contents
	What is cluster analysis?
	Similarities and dissimilarities
	Basic definitions
	Numerical data
	Binary data
	Ordinal and nominal data
	Standardization of attributes and missing data
	Some clustering algorithms
	Agglomerative algorithms
	Divisive algorithms
	Iterative relocation methods
	A model for clustering algorithms
	Validation
	References
	Additional figures
	Appendix

