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1 Congruences

Unless otherwise specified, L will denote a finite lattice. This writeup tries to give more
details to a discussion that was a part of [10].

Definition 1.1 A quotient (denoted s/t) is an ordered pair (s, t) of elements of L with
s ≥ t. Say that s/t → u/v in one step if for some w ∈ L, u/v = s ∨ w/t ∨ w, or
u/v = s∧w/t∧w. Write s/t → u/v to denote the composition of finitely many relations of
the form xi−1/yi−1 → xi/yi, each in one step, with x0/y0 = s/t and the final step ending in
xn/yn = u/v. (Definition from Dilworth [5], p. 349). To say that s/t → u/v is to say that
the quotient s/t is weakly projective onto the quotient u/v. Any congruence Θ is completely
determined by the quotients it identifies. The reason for this is that xΘy ⇐⇒ x∨yΘx∧y.

For any quotient a/b with a > b here is a formula for the smallest congruence Θab that
identifies a and b. For x > y, xΘaby if and only if there exists a finite chain x = x0 > x1 >
· · · > xn = y such that a/b → xi−1/xi for 1 ≤ i ≤ n. Though we can keep this in mind, there
is a much more concise way of looking at all this when we are dealing with finite lattices. We
assume unless otherwise specified that L denotes a finite lattice. A join-irreducible member
of L is an element j ∈ L such that j > 0 and j >

∨
{x ∈ L : x < j}. Thus j has a unique

largest element j∗ below it. Every element of L is the join of all join-irreducibles below it,
so the structure of L is determined by the set J(L) of all join-irreducibles of L. There is a
dual notion M(L) of meet-irreducibles. Every m ∈ M(L) is covered by a unique smallest
element m∗, and every element of L is the meet of a family of meet-irreducibles. Note that
any congruence Θ of L is completely determined by {j ∈ J(L) : jΘj∗}, so this gives us
another way of thinking about congruences. In particular, we can restrict a congruence to
J(L), and just worry about whether quotients of the form j/j∗ are collapsed. Of course
there are dual notions involving meet-irreducibles. We mention the references [3, 4, 6, 7]
where some of this is discussed, and briefly present the items we shall need.

Remark 1.2 The material in this remark is taken from Day [4], pp. 398-399, and [3], p. 72.

• For p, q ∈ J(L), Alan Day [4] writes qCp to indicate that for some x ∈ L, q ≤ x ∨ p
with q 6≤ x∨ p∗, thus forcing q 6≤ x∨ t for any t < p. Note that for any congruence Θ,
if qCp and pΘp∗, then q = q ∧ (p ∨ x)Θq ∧ (p∗ ∨ x) < q forces qΘq∗. The idea for the
C relation is attributed by Day to material from [14]. Warning: Some authors write
this relation as pDq or qDp.

• A J-set is a subset J ⊆ J(L) such that p ∈ J with qCp =⇒ q ∈ J .

• JSet(L) is the system of all J-sets of L, ordered by set inclusion.
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• There is a natural lattice isomorphism between the congruences on L and (JSet(L),⊆).
The association is given by mapping the congruence Θ to JΘ = {j ∈ J(L) : jΘj∗}.
Going in the other direction, we can construct the congruence associated with a J-set
J by using [6], Lemmas 2.33 and 2.34, p. 40 and defining

xΘJy ⇐⇒ {a ∈ J(L): a ≤ x, a 6∈ J} = {a ∈ J(L): a ≤ y, a 6∈ J}.

The ordering of the congruences is given by Θ1 ≤ Θ2 ⇐⇒ xΘ1y implies xΘ2y.

• For each p ∈ J(L), let Φp denote the least congruence that makes p congruent to p∗.

Then JΦp
= {q ∈ J(L) : qĈp} where Ĉ is the reflexive transitive closure of C. The

reader should observe that JΦp
is the smallest J-set containing p.

• For p, q ∈ J(L), it is true that Φq ≤ Φp ⇐⇒ q ∈ Φp ⇐⇒ qĈp. Thus Φp = Φq ⇐⇒

both pĈq and qĈp.

We mention that Leclerc and Monjardet were independently led to a similar idea in
1990 (See [11, 13] for a discussion of this). For p, q ∈ J(L), they write qδp to indicate that
q 6= p, and for some x ∈ L, q 6≤ x while q ≤ p ∨ x. They show in [11], Lemma 2, that the
relations C and δ coincide if and only if L is atomistic. Here an atom of a lattice L with
0 is a minimal element of L \ {0}, and L is atomistic if every nonzero element of L is the
join of a family of atoms. The dual notions of dual atoms (coatoms) and dual atomistic

(coatomistic) are defined in the expected manner.

Definition 1.3 An element s of a lattice L is called standard if (s∨x)∧y = (s∧y)∨(x∧y)
holds ∀x, y ∈ L. Note that the standard elements form a distibutive sublattice of L, and
every standard element of L determines a congruence relation Θs by the rule xΘsy iff
x ∨ y = (x ∧ y) ∨ s1 for some s1 ≤ s.

Theorem 1.4 Let L be a finite atomistic lattice. Every congruence relation on L is the
minimal one defined by a standard element.

Proof: This is well known and trivial to prove. Yet we supply a proof on the grounds
that it builds intuition. Let Θ be a congruence on L. Let s =

∨
{p : pΘ0}, and note that

sΘ0. Thus for any x, y ∈ L, (s ∨ x) ∧ yΘ(0 ∧ x) ∧ y = x ∧ y. Suppose one could find x, y
such that (s∨x)∧ y > (s∧ y)∨ (x∧ y). There must be an atom p such that p ≤ (s∨x)∧ y
but p 6≤ (s ∧ y) ∨ (x ∧ y). Then p 6≤ x ∧ y forces pθ0, so p ≤ s ∧ y, a contradiction.

2 Results related to relations

Think of an underlying finite lattice L, with J = J(L) the set of join-irreducibles of L.
Though we are interested in the congruences of L, it turns out to be useful to abstract
the situation, see what can be proved, and then later recapture the deep and natural
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connection with congruences. This idea was already noted by Grätzer and Wehrung in [8].
The situation serves to illustrate one of the most beautiful aspects of mathematics. Looking
at an abstraction of a problem can actually simplify proofs and provide more general results.
We ask the reader to bear in mind that though we restrict our attention to finite lattices,
we hold open the possibility of establishing a generalization to more general venues. Of
course Theorem 1.4 is an example of a result that requires looking at the underlying lattice.

We begin with some notational conventions. Let J be a finite set, and R ⊆ J × J
a binary relation. For a ∈ J , let R(a) = {x ∈ J : aRx}, and for A ⊆ J , let R(A) =⋃
{R(a): a ∈ A}. The relation R−1 is defined by aR−1b ⇔ bRa. A subset V of J is called

R-closed if R(V ) ⊆ V , and R−1-closed if R−1(V ) ⊆ V . It is easily shown that V is R-closed
if and only if its complement J \ V is R−1-closed. We are interested in the set V = VR of
R−1-closed sets, ordered by set inclusion. We chose R−1-closed sets so as to be consistent
with the terminology of Remark 1.2. Clearly (V,⊆) is a sublattice of the power set of J ,
and has the empty set as its smallest member, and J as its largest member. It will be
convenient to simply call any P ∈ V a J-set to denote the fact that it is R−1-closed. Note
that P ∈ V has a complement in V if and only if J \ P ∈ V. Thus P has a complement if
and only if it is both R−1-closed and R-closed.

Remark 2.1 The relation R is said to reflexive if jRj for all j ∈ J . It is transitive if
hRj, jRk together imply that hRk. A relation that is both reflexive and transitive is said
to be a quasiorder. This is a rather general concept, as every partial order and every
equivalence relation is a quasiorder. If the relation R that defines V is already a quasiorder,
then clearly every set of the form R(a) or R(A) is in fact R-closed. Since R−1 is also
a quasiorder, the same assertion applies to R−1. The relation R ∩ R−1 is the largest
equivalence relation contained in both R and R−1. The least quasiorder containing both R
and R−1 is denoted R ∨R−1, and it is actually also an equivalence relation. The R ∨R−1

closed sets are those that are both R and R−1 closed.

We could now continue the discussion with a fixed quasiorder R, but we choose instead
to have notation that provides an abstract version of Remark 1.2. Accordingly, we take
J to be a finite set, but are thinking it as being the join-irreducibles of a finite lattice. A
relation R on J is called irreflexive if xRx fails for every x ∈ J . We define the relation ∆
to be {(x, x) : x ∈ J}. We then take RC to be an irreflexive binary relation on J , and R

Ĉ

the reflexive transitive closure of RC . By this we mean the transitive closure of ∆ ∪ RC .
Thus R

Ĉ
is a quasiorder of J . Think of qRCp as the abstraction of qCp, and qR

Ĉ
p as the

abstraction of qĈp. We are interested in V = {V ⊆ J : p ∈ V, qRCp =⇒ q ∈ V }, order it
by set inclusion, and call V ∈ V a J-set. Note that {∅, J} ⊆ V, and that V is closed under
the formation of intersections and unions. Thus V is a finite distributive lattice. Though
RC is irreflexive, we recall that R

Ĉ
is in fact reflexive by its very construction.

Some intuition may be gleaned from a quick look at what happens when R
Ĉ

is a
partial order. We then write q ≤ p to denote the fact that qR

Ĉ
p. We ask what it means

for P to be in V. We note that p ∈ P , q ≤ p implies q ∈ P . Thus V is just the set of order
ideals of (J,≤).
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Remark 2.2 Here are some basic facts about V. We remind the reader that each item
follows from elementary properties of binary relations; yet each translates to a known
property of congruences on a finite lattice.

1. Since V is closed under the formation of set intersection, it is clear that for each p ∈ J ,
there is a smallest J-set containing p. We denote it as Jp. Any J-set containing p
must clearly also contain {q ∈ V : qR

Ĉ
p} = R−1

Ĉ
(p). Since {q ∈ V : qR

Ĉ
p} is itself a

J-set, we deduce that Jp = {q ∈ V : qR
Ĉ
p}.

2. Thus Vp ⊆ Vq ⇐⇒ p ∈ Vq ⇐⇒ pR
Ĉ
q.

3. If V ∈ V, then V =
⋃
{Vp : p ∈ V }. The J-sets of the form Vp are clearly the join-

irreducibles of V. To see why, suppose V is not of the form Vp. Then clearly V is not
join-irreduciible. On the other hand, if V = Vp, let V ′ =

⋃
{Vq:Vq ⊂ V }. Evidently

p 6∈ V ′, so V is join-irreducible.

4. If A is an atom of V, then p, q ∈ A =⇒ pR
Ĉ
q and qR

Ĉ
p, so (p, q) ∈ R

Ĉ
∩R−1

Ĉ
. Thus

A ∈ V is an atom iff A = Vp for any p ∈ A.

5. If R
Ĉ

is symmetric, then every join-irreducible is an atom. It follows that V is
atomistic.

6. R
Ĉ
is symmetric if and only if V is a Boolean algebra.

Proof: Suppose first that R
Ĉ
is symmetric. We will show that for any V ∈ V, it is

true that J \ V ∈ V. Let p ∈ V and q ∈ J \ V . Suppose rRCq. We claim that r 6∈ V .
To prove this, we use the symmetry of R

Ĉ
to see that qR

Ĉ
r. If r ∈ V , then qR

Ĉ
r

would force q ∈ V , contrary to q ∈ J \ V , thus showing that J \ V ∈ V. It follows
that V is complemented, so it is a Boolean algebra.

Suppose conversely that V is a Boolean algebra. If Vz is an atom of V, then a ∈ Vz

implies Va = Vz, so a, b ∈ Vz =⇒ aR
Ĉ
b. Thus the restriction of R

Ĉ
to Vz is symmetric.

What happens if a ∈ Vz and b ∈ J \ Vz? Then both aR
Ĉ
b and bR

Ĉ
a must fail. Since

J is the union of all atoms of V it is immediate that R
Ĉ
is symmetric.

We note that for congruences on a finite lattice L, this forces the congruence lattice to
be a Boolean algebra if and only if the Ĉ relation on L is symmetric, thus generalizing
many known earlier results that have been established for congruences on lattices.

Remark 2.3 It is well known that associated with every quasiordered set there is a homo-
morphic image that is a partially ordered set. For the quasiorderR

Ĉ
that we are considering,

here is how the construction goes. We say that p ∼ q for p, q ∈ V if pR
Ĉ
q and qR

Ĉ
p. Then

∼ is an equivalence relation on V , and V/∼ is a partially ordered set with respect to E

defined by [p] E [q] if Vp ⊆ Vq. One may ultimately show (See Theorem 2.35, p. 41 of [6])
that (V,⊆) is isomorphic to the order ideals of (V/ ∼, E). If R

Ĉ
is symmetric, then it is

an equivalence relation. Though one usually associates with any equivalence relation its
associated family of partitions, the set V of J-sets associated with R

Ĉ
is most certainly

rather different.
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If P ∈ V, we want a formula for the pseudo-complement P ∗ of P . This is the largest
member B of V such that P ∩B = ∅. A finite distributive lattice is called a Stone lattice if
the pseudo-complement of each element has a complement.

Theorem 2.4 For P ∈ V, P ∗ = {q ∈ J :R−1

Ĉ
(q) ∩ P = ∅} = J \R

Ĉ
(P )

Proof: We begin by proving the assertion that {q ∈ J :R−1

Ĉ
(q) ∩ P = ∅} = J \ R

Ĉ
(P ).

This follows from {q ∈ J :R−1

Ĉ
(q) ∩ P 6= ∅} = R

Ĉ
(P ). To establish this, note that

q ∈ R
Ĉ
(P ) ⇔ pR

Ĉ
q with p ∈ P ⇔ qR−1

Ĉ
p with p ∈ P ⇔ R−1

Ĉ
(q) ∩ P 6= ∅. The proof is

completed by noting that if B ∈ V with B ∩P = ∅, then b ∈ B, qR
Ĉ
b =⇒ q ∈ B, so q 6∈ P .

This shows that B ⊆ P ∗ .

Lemma 2.5 P ∈ V has a complement in V ⇐⇒ q ∈ J \ P, q1RC q implies q1 ∈ J \ P .

Proof: The condition is just the assertion that J \ P is a J-set.

Theorem 2.6 V is a Stone lattice if and only if R
Ĉ
has the property that for each P ∈ V,

q 6∈ P ∗ implies that either q ∈ P or else q 6∈ P and there exists q1 ∈ P such that q1RĈ
q

Proof: This just applies Lemma 2.5 to P ∗.

Here is yet another characterization of when (V,⊆) is a Stone lattice. The result for
congruences appears in [9], and the proof we present is just a minor reformulation of the
proof that was presented therein. We mention an alternate characterization in the spirit of
Dilworth’s original approach to congruences that was given in [12]. Note that the arguments
in [9] were applied to the set of all prime quotients of a finite lattice, where the argument
given here applies to any quasiorder defined on a finite set J . We should also mention
earlier and stronger results that appear in [15, 16, 17]. So is there anything new in what
follows? Only the fact that the proofs can be reformulated for abstract quasiorders.

Theorem 2.7 V is a Stone lattice if and only if R
Ĉ
has the property that for each a ∈ V

there is one and only one atom Vk of V such that Vk ⊆ Va.

Proof: Let P ∈ V, a ∈ J with Vk the unique atom of V that is ⊆ Va. Recall that
Vk ⊆ Va ⇐⇒ kR

Ĉ
a.

If k 6∈ P , we let q ∈ V with qRCa. We will show that q 6∈ P . Let Vj be an atom under
Vq. Then jR

Ĉ
q, qRCa forces jR

Ĉ
a. Since there is only one atom under a, we must have

Vj = Vk, so kR
Ĉ
q. If a ∈ P , we note that kR

Ĉ
a would put k ∈ P , contrary to k 6∈ P . Thus

a 6∈ P . Similarly, q ∈ P produces a contradiction. Thus q 6∈ P for any qR
Ĉ
a, and this tells

us that a ∈ P ∗.

If k ∈ P , then k ∈ P ∗∗. Replacing P with P ∗ in the above argument now shows that
a ∈ P ∗∗. In any case, a ∈ J implies a ∈ P ∗ ∪ P ∗∗ so P ∗ and P ∗∗ are complements.

Now assume that for some a ∈ V there are two atoms Vj and Vk both contained in Va.
If a ∈ V ∗∗

k , then jR
Ĉ
a =⇒ j ∈ V ∗∗

k . But Vj ∩ Vk = ∅ implies that Vj ⊆ V ∗

k , a contradiction.
If a ∈ V ∗

k , then kR
Ĉ
a would put k ∈ V ∗

k , contrary to k ∈ Vk ⊆ V ∗∗

k . Thus a 6∈ V ∗∗

k ∪ V ∗

k , so
V ∗∗

k and V ∗

k are not complements.
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Figure 1: A dual atomistic lattice

Definition 2.8 Let RC denote an irreflexive binary relation on the finite set J . To say that
V is subdirectly irreducible is to say that there is only one atom in V. This is a very old and
extremely useful notion in Universal Algebra, and dates back at least to a publication of
G. Birkhoff [1]. It negates the idea of a lattice being subdirectly reducible in the sense that
the lattice is a sublattice of a nontrivial direct product of lattices. It just states that there
is a nontrivial congruence relation that is contained in any other nontrivial congruence.

The following finite version of a result due to S. Radeleczki [15, 16, 17] now pops out.

Corollary 2.9 V is the direct product of subdirectly irreducible factors if and only if for
each a ∈ J there is only one atom Vk ⊆ Va.

3 An example

Example 3.1 In this example, we let L denote the finite lattice depicted in Figure 1. This
lattice was constructed from 23 (the Boolean cube) by removal of one atom and all links to
that atom. The reader should observe that this lattice is dual atomistic, but not atomistic.
The join-irreducibles are a, b, c, d, while the meet-irreducibles are b, d and e. We leave it to
the reader to confirm that the C-relation is given by bCa, bCc, bCd, dCa, dCb, dCc, and
that the J-sets are

∅, {b, d}, {a, b, d}, {c, b, d}, {a, b, c, d}.

The J-set {a, b, d} produces a congruence with two classes {a, b, 0} and {c, d, e, 1}. By
synnetry the classes assoiated with {c, b, d} are {c, d, 0} and {a, b, e, 1}. Finally the classes
associated with {b, d} are {a, b}, {c, d}, {e, 1}, and {0}. The remaining J-sets lead to
trivial congruences.
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We now replace L with its dual. This is an atomistic lattice with three atoms b, d and
e. To maintain consistent notation, we relabel 0 as 1′ and 1 as 0′. The congruence classes
for Θd are {a, b, 1′} and {c, d, e, 0′}. By symmetry, Θe has classes {c, d, 1′} and {a, b, e, 0′}.
Finally, Θe produces classes {a, b}, {c, d}, {e, 0′}, and {1′}. We note that the J-sets for
the dual of L are

∅, {e}, {b, e}, {d, e}{b, c, d}.

We leave it to the reader to verify these calculations.

References

[1] Birkhoff, G., Subdurect unions in universal algebra, Bulletin Amer. Math. Soc. 50,
1944, 764–768.

[2] Blyth, T. S., and Janowitz, M. F., Residuation Theory, Pergamon, 1972.

[3] Day, A., Characterization of finite lattices that are bounded homomorphic images or

sublattices of free lattices, Can. J. Math. 31, 1978, 69-78.

[4] Day, A., Congruence normality: The characterization of the doubling class of convex

sets, Algebra Universalsis 31, 1994, 397–406.

[5] Dilworth, R. P., The structure of relatively complemented lattices, Annals of Math.,
Second Series 51, 1950, 348–359.
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