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Abstract

Recent events at the Boston Marathon demonstrate a need for a group of individuals
to quickly and simultaneously make a number of important decisions. This leads to a
study of the direct product of oligarchies each having the same collection of agents, but
analyzing different issues.

1 Background

Remark 1.1 Let n be a fixed positive integer, and N = {1, 2, . . . , n}. For the finite
lattice L, let Ln denote the direct product of n copies of L. We agree to let π denote a
typical profile π = (x1, x2, . . . , xn) of members of Ln, and Nx(π) = {i ∈ N :x ≤ xi}. The
constant profile πx is defined by πx = (x, x, . . . , x). A consensus function on L is a mapping
F :Ln → L. To say that the consensus function F is Paretian is to say that for any a ∈ L,
if Na(π) = N , then a ≤ F (π). To say that F is decisive is to say that if Na(π) = Na(π

′)
then a ≤ F (π) ⇔ a ≤ F (π′). F is neutral monotone if for all a, a′ ∈ L, and all profiles π, π′,
Na(π) ⊆ Na′(π

′) implies that if a ≤ F (π) then a′ ≤ F (π′).
Finally to say that F is an oligarchy is to say that there is a subset M of the indexing

set N such that for every profile π, F (π) =
∧
{π(j): j ∈ M}. A mapping F :Ln → L is called

residual if it is a meet homomorphism such that F (π1) = 1. The mapping F 0:Ln → L is
defined by F 0(π) = 0 for every profile π. We begin by restating a Theorem of Leclerc
and Monjardet. This result generalizes a result from [2] and is of great interest because
it provides a link between ideas that originated in the realm of social choice theory with
results coming from the structure theory of partially ordered sets.

Theorem 1.2 ([4],Theorem 5) Let L be a finite simple atomistic lattice having cardinality
greater than 2, and F :Ln → L a consensus function on L. The following conditions are
then equivalent:

(F1) F is decisive and Paretian.

(F2) F is neutral monotone and is not F 0.

(F3) F is a meet homomorphism and F (π) ≥
∧

j π(j) for all profiles π.

(F4) F is a residual map and F (πa) ≥ a for every atom a.

(F5) F is an oligarchy.

Definition 1.3 For a finite atomistic lattice L, Monjardet ([5], p. 51) introduces a relation
δ on pairs of atoms by letting aδb denote the fact that a 6= b and for some x ∈ L, a < b∨ x

with a, b 6≤ x
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Remark 1.4 Though the proof given by Monjardet and Leclerc in [4] of (F4) =⇒ (F5)
is very clear, we restate it here to aid the reader’s intuition. We begin with the idea of a
residuated map. We agree to let L,M denote finite lattices, with F :L → M and G:M → L

mappings. To say that F is residual is to say that F is a meet homomorphism such that
F (1) = 1. Recall that G is residuated if G is a join homomorphiem such that G(0) = 0.
Every residual map F :L → M has a unique residuated mapping G:M → L associated with
it. The two are each isotone and are related by the equation

G(y) ≤ x ⇐⇒ y ≤ F (x).

The mapping G may be directly defined from F by taking G(y) =
∧
{x ∈ L: y ≤ F (x)}.

Properties of residuated and residual mappings are developed in detail in [1]. We now
repeat the proof by Leclerc and Monjardet of Theorem 1.2, (4) =⇒ (5). Recall that L

is a finite simple atomistic lattice having cardinality at least 3, and that F :Ln → L is a
residual map such that for every atom a of L, F (πa) ≥ a. We need to know how F gets
to be an oligarchy. Let G:L → Ln be the residuated map associated with F . Apply the
isotone mapping G to the ineqality a ≤ F (πa) to obtain G(a) ≤ GF (πa) ≤ πa. Thus
for any index i, Gi(a) ∈ {0, a}. Here Gi is the ith component of the mapping G. Let
M(a) = {i ∈ N :Gi(a) = a}.

Claim 1: For distinct atoms a and b, aδb =⇒ M(a) ⊆ M(b).
Proof: Since aδb there is an x ∈ L such that a < b∨x and a 6≤ x. Since L is atomistic,

there is a finite family of atoms K such that a ≤
∨

K, a 6∈ K, while b ∈ K. We may clearly
assume K is such a family having minimal cardinality. Then a ≤

∨
K. Applying the

residuated mapping G to this inequality produces G(a) ≤ G(
∨

K) =
∨
{G(c): c ∈ K}.

By minimality of the family K, Gi(a) = a =⇒ Gi(c) = c ∀c ∈ K. It is immediate that
M(a) ⊆ M(c) ∀c ∈ K.

Clain 2: If L is simple, then M(a) = M(b) for all atoms a, b.
Proof: For L simple there is a path involving δ from a to b, and another path from

b to a.

Now if M = M(a) for any atom a, then a ≤ F (π) ⇐⇒ G(a) ≤ GF (π) ≤ π. Hence for
each coordinate i ∈ M , a = Gi(a) ≤ π(i), so a ≤ π(i) for all i ∈ M .

Thus a ≤ F (π) ⇐⇒ a ≤ π(i)∀i ∈ M ⇐⇒ a ≤
∧
{π(i): i ∈ M}. Since L is atomistic,

it follows that F (π) =
∧
{π(i): i ∈ M}.

We pause to provide a bit of intuitive motivation for the subject at hand. Suppose for
the moment that you are in charge of production quotas for a large manufacturing company
and that you have an advisory committee consisting of n agents. Each agent i gives you
advice in the form of a partition xi of the space of all possible actions D you might take, and
on the basis of these n partitions produced by π, you must decide on one or more actions
F (π). The partitions of D may be viewed as a finite simple lattice that is both atomistic
and dual atomistic, so we are in a setting where Theorem 1.2 may be applied. Further
motivation is provided in [2]. This makes an important connection between properties of
social choice functions and pure lattice theoretic ideas. It would be interesting to see if
this result could be extended to a somewhat broader class of lattice. The key observation
is in Corollary 3.2 of [3], which states that every finite atomistic lattice in which the ∇
relation is symmetric is necessarily a direct product of simple lattices. Making use of this
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result, we may move from results on a finite simple lattice to results on a direct product of
finite simple lattices. Thus we have results for any atomistic finite lattice in which the ∇
relation is symmetric, and in particular for any finite lattice which is both atomistic and
dual atomistic. Here a∇b means that (a∨ x)∧ b = x∧ b for all x ∈ L. For a, b atoms there
is a natural connection with the δ relation given by a∇b ⇐⇒ bδa fails (See [3]). Here
specifically is what we have in mind. Let L1, L2, . . . , Lk each denote finite simple lattices
having cardinality > 2, and assume Fi:L

n
i → Li is an oligarchy on Li for each i. Let

L =
∏

i Li and let F be defined on Ln by F (π) having its ith component the output of Fi

applied to the restriction of π to Li. Alternately, we could take L to be the internal direct
sum of the Li lattices, and then view F (π) as the union of the outputs of the Fi outputs.
Either way, F is a form of generalized oligarchy. It would be of interest to extend Theorem
1.2 to this situation.

2 The axioms for a generalized oligarchy

There will be some duplication of notation between this discussion and the comments made
in Section 1. Assume L is a finite atomistic ∇-symmetric lattice that is the internal direct
sum of k simple lattices, each having more than 2 members. Let z1, z2, . . . , zk denote the k

atoms of Z(L), the center of L. Then each interval [0, zi] is a simple lattice having at least
3 members, and every atom of L is a member of exactly one interval of the form [0, zi].
Let n be a positive integer, and Ln the direct product of n copies of L. Let F :Ln → L

be a consensus function. We would like to relate properties of F to properties of a family
of induced consensus functions (Fi: 1 ≤ i ≤ k), where Fi: [0, zi]

n → [0, zi]. For each profile
π = (x1, x2, . . . , xn) of members of Ln, let πi = πzi ∧ π = (x1 ∧ zi, x2 ∧ zi, . . . , xn ∧ zi)
and Fi(πi) to be F (π) ∧ zi. Please note that if π, π′ are profiles, then πi = π′

i for all i
implies that π = π′. We would like also to know that if πi = π′

i for a specific index i, then
Fi(π) = F (π′). In other words, we need to know that F is summand compatible in the sense
that πi = π′

i =⇒ F (π) ∧ zi = F (π′)∧ zi for all profiles π and π′. This assumption allows us
to lift properties of a direct summnd of L to corresponding properties of L. We must make
sure that each Fi is well defined. Let π

ı be a profile on [0, zi], and let π∗ denote πı viewed
as a profile on L. Then (π∗)i = πı so Fi(π

ı) has been defined. Note further that for any
profile π of Ln, πi = (πi)i, so F (π) ∧ zi = F (πi) ∧ zi.

At this point there are two sets of indexing symbols under consideration. To help
clarify the notation, we agree to use the subscript i when referring to one of the simple
lattices [0, zi]; with the subscript j reserved to specify a specific member of a profile.

Theorem 2.1 Let F be a summand compatible consensus function on a finite atomistic
lattice L, where L is a direct sum of simple lattices, each of which has at least three
members. The following conditions are then equivalent:

(P1) F is decisive and Paretian.

(P2) F is neutral monotone but is not F 0.

(P3) F is a meet homomorphism and F (π) ≥
∧

j π(j) for any profile π.

(P4) F is a residual map and F (πa) ≥ a for every atom a.
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(P5) F is a generalized oligarchy in the sense that for every atom zi of the center of L,
the induced consensus funnction Fi defined on [0, zi] by Fi(π ∧ πzi) = F (π) ∧ zi is an
oligarchy.

Proof: Recall that for some integer n > 1, F :Ln → L, and Fi: [0, zi]
n → [0, zi]. We will

attempt to relate each property (Pk) to the corresponding property (Fk) from Theorem
1.2, and then use the results of that Theorem. The arguments rest on the fact that for any
atom a of L, if a ≤ zi, then for any profile π of Ln, it is true that

(1) a ≤ Fi(πi) ⇐⇒ a ≤ F (π) ∧ zi ⇐⇒ a ≤ F (π).

Suppose first that each Fi is Paretian. For a ∈ L, recall that πa denotes the constant
profile (a, a, . . . , a), and note that if a ≤ zi, then a ≤ Fi(πa)i, so a ≤ F (πa). This shows
that F is Paretian. The converse implication F Paretian implies each Fi is Paretian is
clear, so we have that F is Paretian if and only if every Fi is Paretian. We turn now to the
connection between F being decisive and each Fi being decisive. For the atom a of L, we
note that a ≤ zi in L ⇐⇒ a ≤ zi in each factor of Ln. Thus

(2) Na(π) ( in L) = Na(πi) ( in [0, zi])
The connection between F and each Fi being decisive is now clear.

We turn next to property (P2). Let F satisfy (P2), Recall from equation (2) that
for any atom a ∈ L, if a ∈ [0, zi], then Na(π) = Na(πi). It follows easily that F neutral
monotone is equivalent to every Fi being neutral monotone. The fact that F 6= F 0 is
equivalent to every Fi not being F 0 is obvious.

Suppose next that F is a meet homomorphism. Let π, π′ be profiles. Then for any
index i ≤ k, Fi(π ∧ π′)i = Fi(π ∧ π′ ∧ πzi) = F (π ∧ π′ ∧ πzi) ∧ zi = F (π ∧ πzi) ∧ zi ∧ F (π′ ∧
πzi) ∧ zi = Fi(πi) ∧ Fi(π

′

i). This shows that F a meet homomorphism implies each Fi is a
meet homomorphism. Suppose that F (π) ≥

∧
j π(j). Then F (π) ∧ zi ≥

∧
j(π(j) ∧ zi), so

Fi(πi) ≥
∧

j(πi(j)). Thus F satisfying (P3) implies every Fi satisfies (P3). Now suppose
every Fi satisfies (P3). Then for each i ≤ k

F (π ∧ π′) ∧ zi = Fi(π ∧ zi ∧ π′ ∧ zi) = Fi(π ∧ zi) ∧ Fi(π
′ ∧ zi) = F (π) ∧ zi ∧ F (π′) ∧ zi.

Since L is the direct sum of the intervals [0, zi], it follows that F is a meet homomorphism.
Noting that F (π) ≥

∧
j π(j) ⇐⇒ Fi(πi) ≥

∧
j πi(j), we see that F satisfies (P3) if and

only if every Fi satisfies (F3).

At this point we may apply Theorem 1.2 and deduce the equivalence of (P1), (P2),
and (P3). Noting that (P3) trivially implies (P4) for F , and that (P4) for F forces (F4)
for each induced function Fi, a second application of Theorem 1.2 completes the proof.

Open issues: The nature of the summand compatibility condition needs investigation.
We also wonder what happens for finite atomistic lattices that are not ∇-symmetric, or
what happens when L is not atomistic, or for other types of consensus functions. Here is
what can now be said when ∇ is symmetric on an atomistic lattice.

Notation: Unless otherwise specified, we now assume that L is a finite atomistic
lattice and that it is isomorphic to a finite direct product of simple lattices each of which
has cardinality at least three. We also assume that F :Ln → L is a consensus function, and
that z1, z2, . . . , zk denote the atoms of the center of L, so each interval [0, zi] is a simple
atomistic lattice.
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Lemma 2.2 If F (πzi) = zi for every atom zi of the center of L, theb F is summand
compatible.

Proof: Fi(π ∧ πzi) = F (π) ∧ zi = F (π) ∧ F (πzi).

Lemma 2.3 If F (π ∧ πzi) = F (π) ∧ F (πzi) and F (πzi) ≥ zi for all i, then F is summand
compatible.

Proof: Let F (πzi) = t, where t ≥ zi. Then F (π ∧ πzi) = F (π) ∧ t, so if πi = π′

i, then
F (π) ∧ zi = F (π′) ∧ zi. This is summand compatibility.

Lemma 2.4 If F is neutral monotone and not F 0 then F is summand compatible.

Proof: By [5], Proposition 2.3, p. 60, F is Paretian. Also, F is isotone and decisive. in
view of Lemma 2.3, we need only show that F is a meet homomorphism.
Using F isotone, F (π ∧ π′) ≤ F (π) ∧ F (π′). Suppose there exist profiles π, π′ for which
F (π ∧ π′) < F (π) ∧ F (π′). Since L is atomistic, there must exist an atom c such that
c 6≤ F (π ∧ π′) and c ≤ F (π) ∧ F (π′)

Assuming π = (x1, x2, . . . , xn) and π′ = (x′
1
, x′

2
, . . . , x′n) and the fact that F is Paretian,

there must exist an index j such that c 6≤ xj ∧x′j. Note that Nc(π∧π′) = Nc(π)∩Nc(π
′) ⊂

both Nc(π) and Nc(π
′) . Why? If, for example, Nc(π ∧ π′) = Nc(π), then by F neutral

monotone, c ≤ F (π ∧ π′), a contradiction.
Let zi be the unique atom of Z(L) for which c ≤ zi. Since [0, zi] is simple with

cardinality greater than 2, there must exist an atom b ≤ zi such that bδc. In other words,
such that for some x ∈ [0, zi], b, c 6≤ x and b < c ∨ x. Observe that c 6≤ x by definition of δ,
and x 6≤ c.

Following a proof given in [4], we now define a profile π′′:

x′′j = c for c ∈ π(j) but 6∈ π(j) ∧ π′(j).

x′′j = x for c ∈ π′(j)) but 6∈ π(j) ∧ π′(j).

x′′j = c ∨ x for c ∈ π(j) ∧ π′(j). (Not needed if π(j) ∧ π′(j) = 0)

x′′j = 0 otherwise

1. Note that j ∈ Nc(π
′′) ⇐⇒ c ≤ x′′j ⇐⇒ j ∈ Nc(π). Thus Nc(π

′′) = Nc(π).

2. A similar argument shows that Nx(π
′′) = Nc(π

′).

3. Also, j ∈ Nb(π
′′) ⇐⇒ b ≤ x′′j ⇐⇒ x′′j = c ∨ x ⇐⇒ c ∈ π ∧ π′. Thus

Nb(π
′′) = Nc(π ∧ π′).

4. Nc(π
′′) = Nc(π) and c ≤ F (π) imply by F neutral that c ≤ F (π′′).

5. Nx(π
′′) = Nc(π

′) with c ≤ F (π′), so x ≤ F (π′′) by Lemma 4 of [4].

6. Then b < c ∨ x ≤ F (π′′) and Nc(π ∧ π′) = Nb(π
′′) implies that c ≤ F (π ∧ π′) (using

neutrality), a contradiction. If Nc(π ∧ π′) = ∅, the contradiction is reached using
vacuous implication.
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We now may restate Theorem 2.5, questioning whether summand compatibility can be
removed from (P1). We leave the details to the reader.

Theorem 2.5 Each of the following conditions are equivalent:

(P1’) F is summand compatible, decisive and Paretian.

(P2’) F is neutral monotone but is not F 0.

(P3’) F is a meet homomorphism and F (π) ≥
∧

j π(j) for any profile π.

(P4’) F is a residual map and F (πa) ≥ a for every atom a.

(P5’) F is a generalized oligarchy.
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