GENERALIZED OLIGARCHIES

by Melvin F. Janowitz

DIMACS, Rutgers University Piscataway, NJ 08854

DIMACS Workshop on Algorithmic Information Fusion and Data Mining (WAIFDM) September 19 – 20, 2013 at Rutgers University Internet version:

 $http://home.dimacs.rutgers.edu/{\sim}melj/dimacstalk3atr.pdf$

Background

L is a finite lattice.

Partially ordered set.

All a, b have a join $(a \lor b)$ and meet $(a \land b)$.

L represents possible actions or decisions.

$$L^n = L \times L \times \cdots \times L$$
 (*n* factors)

Defn: A profile $\pi = (x_1, x_2, \dots, x_n)$.

Idea: You are getting advice from *n* experts.

Entry x_i is advice from expert i.

Defn: A consensus function is a mapping $F: L^n \to L$.

 $F(\pi)$ yields the summary advice.

Can think of L as representing partitions of a set, or weak orders, or at least three atoms representing choices with added 0 and 1.

These are all atomistic simple finite lattices.

atom: An element that covers 0.

atomistic: Every element is join of atoms.

simple: Only trivial congruences.

Conditions to Consider

 $F: L^n \to L$ where L is a finite atomistic lattice.

J = set of atoms.

Terminology:

For profile π and $a \in L$, define $N_a(\pi) = \{i : a \le \pi(i)\}$.

For $x \in L$, $\pi_x = (x, x, \dots, x)$.

Define F^0 by $F^0(\pi) = 0$ for all profiles π .

Paretian: $N_a(\pi) = N \Rightarrow a \leq F(\pi)$.

Decisive: If $N_a(\pi) = N_a(\pi')$, then $a \le F(\pi) \Leftrightarrow a \le F(\pi')$.

Neutral monotone: For $a, a' \in L$, if $N_a(\pi) \subseteq N_{a'}(\pi')$, then $a < F(\pi) \Rightarrow a' < F(\pi')$.

Oligarchy: $\exists M \subseteq N \text{ such that } F(\pi) = \bigwedge \{\pi(j) : j \in M\}.$

Think of appointing a committee M that jointly acts as a dictator.

Residual map $F(\pi_1) = 1$ and F is a meet homomorphism.

Fundamental Theorem

Theorem: (Leclerc and Monjardet) L is a finite simple atomistic lattice with cardinality > 2. $F: L^n \to L$. Following are equivalent:

- F is decisive and Paretian.
- $\circled{2}$ F is neutral monotone but not F^0 .
- **3** F is a meet homomorphism and $F(\pi) \ge \bigwedge_j \{\pi(j)\} \ \forall \pi$.
- **4** F is a residual map and $F(\pi_a) \geq a$ for all atoms a.
- F is an oligarchy.

From Aggregation and Residuation, Order **30**, 2013, 261–268. Wish to extend this to direct products of simple lattices. Inspiration: Boston Marathon bombing, or weather events like Hurricane Sandy or the World Trade Center attack.

Finite Atomistic Lattice L

Motivation: Want to apply Oligarchies to several problems at the same time. They may or may not independently reach their decisions.

External idea: Take $L_1, L_2, ..., L_k$ to be finite nondistributive atomistic simple lattices, with $L = L_1 \times L_2 \times \cdots \times L_k$.

Define consensus functions F_i on L_i each with the same value of n.

Let π_i be profile on $(L_i)^n$ for each i with $\pi = (\pi_1, \pi_2, \dots, \pi_k)$.

Define $F: L^n \to L$ by $F(\pi) = (F_1(\pi_1), F_2(\pi_2), \dots, F_k(\pi_k)).$

More Terminology:

Defn: For $a, b \in L$, write $a\nabla b$ if $(a \vee x) \wedge b = x \wedge b \forall x$.

Defn: For a, b atoms write $a\delta b$ if $a \neq b$ and for some $x \in L$, $a < b \lor x$ and $a, b \nleq x$.

∇ and δ :

Fact: For a, b distinct atoms, $a\nabla b$ fails $\Leftrightarrow b\delta a$.

Proof: $(a \lor x) \land b > x \land b$ means $b \le a \lor x$ and $b \nleq x$.

Let δ^t denote transitive closure of δ .

Fact: L is simple iff every pair of atoms is connected by δ^t .

Defn: s in a lattice is standard if $\forall x, y$, $(s \lor x) \land y = (s \land y) \lor (x \land y)$. s induces a congruence Θ_s by

 $x\Theta_s y$ if $x\vee y=(x\wedge y)\vee s_1$ for some $s_1\leq s$. Fact: Every congruence on a finite atomistic lattice is generated by

a standard element. Fact: If ∇ is symmetric, then every congruence is generated by a

Fact: If ∇ is symmetric, then every congruence is generated by a central element z.

Defn: z is central iff it has a complement z' and L is isomorphic to $[0,z]\times[0,z']$ under the mapping $x\mapsto(x\wedge z,x\wedge z')$.

Theorem: If ∇ is symmetric, then L is the direct product of simple atomistic lattices.

Generalized oligarchies

```
F: L^n \to L where L is a finite atomistic lattice that is a direct
      product of k simple lattice each with cardinalty \geq 3.
Let z_1, z_2, \ldots, z_k be the atoms of the center of L,
      so each [0, z_i] is simple.
Defn: For each profile \pi, let \pi_i = \pi \wedge \pi_{z_i}.
Defn: For each z_i, define F_i on [0, z_i] by F_i(\pi_i) = F(\pi) \wedge z_i.
If \pi_i = \pi'_i \, \forall i, then \pi = \pi', and there is no issue. For this to make
sense for a single index i, need F summand compatible in that
     \pi_i = \pi'_i implies F(\pi) \wedge z_i = F(\pi') \wedge z_i.
Lemma: If F(\pi \wedge \pi_{z_i}) = F(\pi) \wedge F(\pi_{z_i}) and F(\pi_{z_i}) \geq z_i,
           or if F is neutral monotone and not F^0.
           or if F(\pi_{z_i}) = z_i \, \forall i,
      then F is summand compatible.
```

Distributive simple atomistic lattices have cardinality ≤ 2 , so L is the direct product of a Boolean lattice and some simple lattices each having cardinality > 2.

Theorem: (Improved result) L is a finite atomistic lattice that is the direct product of simple lattices each having cardinality > 2.

- $F: L^n \to L$. Following are equivalent:
 - F is decisive, Paretian and summand compatible.
- \circ F is neutral monotone but not F^0 . **3** F is a meet homomorphism and $F(\pi) \geq \bigwedge_{i} \{\pi(j)\} \ \forall \pi$.
- **4** F is a residual map and $F(\pi_a) \geq a$ for all atoms a.
- **5** F is a generalized oligarchy in the sense that for every atom z_i of the center of L, each induced consensus function F_i defined on $[0, z_i]$ by $F_i(\pi \wedge \pi_{z_i}) = F(\pi) \wedge z_i$ is an oligarchy.

Detour: Residuated and Residual

Let P, Q be finite lattices.

residual $F: P \rightarrow Q$: meet homomorphism F(1) = 1.

residuated $G: Q \rightarrow P$: join homomorphism and G(0) = 0.

For F residual, there is an associated residuated G defined by $G(q) = \bigwedge \{ p \in P \colon q \leq F(p). \}$.

Linked by: $p \leq FG(p)$ and $q \geq GF(q) \forall p \in P, q \in Q$.

The setting: L is a finite simple atomistic lattice having cardinality at least 3, and $F:L^n\to L$ is a residual map such that for every atom a of L, $F(\pi_a)\geq a$.

Proof of how F gets to be an oligarchy.

 $G: L \to L^n$ is the residuated map associated with F.

Apply G to $a \leq F(\pi_a)$ to obtain $G(a) \leq GF(\pi_a) \leq \pi_a$.

Thus for any index j, $G_j(a) \in \{0, a\}$.

Here G_j is the jth component of G.

Defn: Let $M(a) = \{j \in \mathbb{N} : G_j(a) = a\}$.

Residual maps and Oligarchies

Fact: For distinct atoms a and b, $a\delta b\Rightarrow M(a)\subseteq M(b)$. Proof: $a\delta b$ implies $\exists x\in L$ such that $a< b\vee x$ and $a\not\leq x$. Using L atomistic, \exists finite family of atoms K such that $a\leq\bigvee K$, $a\not\in K$, while $b\in K$. We may clearly assume K is such a family having minimal cardinality. Then $a\leq\bigvee K$. Applying the residuated mapping G to this inequality, and

Applying the residuated mapping G to this inequality, and $G_j = jth$ component of $G, G_j(a) = a \Rightarrow G_j(c) = c \, \forall c \in K$.

Fund. Fact: If L is simple, then M(a) = M(b) for all atoms a, b. Now if M = M(a) for any atom a, then $a \le F(\pi) \Leftrightarrow G(a) \le GF(\pi) \le \pi$. Hence for each index $j \in M$, $a = G_j(a) \le \pi(j)$, so $a \le \pi(j)$ for all $j \in M$, and $a \le F(\pi) \Leftrightarrow a \le \pi(j) \ \forall j \in M \Leftrightarrow a \le \bigwedge \{\pi(j) \colon j \in M\}$. Since L is atomistic, it follows that $F(\pi) = \bigwedge \{\pi(j) \colon j \in M\}$.

So we see how residuated maps are the key to constructing an oligarchy on a finite simple atomistic lattice.

(Proof due to Monjardet and Leclerc)

Future Projects

- Suppose there is a meet homomorphism from a finite atomistic lattice L onto a direct product of simple lattices each having cardinality > 2. What then?
- Does any of this extend to finite subdirect products of simple lattices, each having cardinality > 2.
- What about finite lattices that are not atomistic or atomistic but not ∇-symmetric?
- Does a lattice theoretic approach yield any insight into other consensus functions?

That's all Folks!