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Background From Jardine and Sibson

Book: Mathematical Taxonomy by N. Jardine and R. Sibson,
Wiley, New York, 1971. This got me started.

Underlying finite set to be classified: E
Σ(E ) the reflexive symmetric relations on E .

Dissimilarity coefficient (DC) d : E×E → <+
0

• d(a, b) = d(b, a)
• d(a, a) = 0

d is an ultrametric if also
• d(a, b) ≤ max{d(a, c), d(b, c)} for all a, b, c ∈ E .

Numerically stratified clustering (NSC) Td : <+
0 → Σ(E ) a residual

mapping in that
• There is an h such that Td(h) = E×E .
• Td(

∧
hi ) =

⋂
Td(hi ).

NSCs and DCs are in one-one correspondence.

In the book a cluster method is viewed as a transformation of
a DC to an ultrametric.
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An order theoretic approach

All this suggests an order theoretic framework. This was
introduced in a 1978 paper

An order theoretic model for cluster analysis,
SIAM Journal of Applied Math. 34, 55-72.

But there is a problem.

I Can measure dissimilarities in a lattice L with smallest
element 0.

I Thus a DC becomes d : E×E → L.

I An ultrametric satisfies d(a, b) ≤ d(a, c) ∨ d(b, c) for all
a, b, c ∈ E .

I An NSC remains a residual mapping. This is a well known
lattice theoretic mapping and is related to what are called
Galois connections.
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An Example

Example: E = {x , y , z} illustrating the problem.
Dissimilarities measured in 22. Here is the input DC
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Pairs Attribute 1 Attribute 2

xy 0 0
xz 1 0
yz 0 1

Cluster Method: Single Linkage Clustering
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{x , y}, {z} (0,0)

E×E (1,0)

E×E (1,1)

E×E (0,1)

The levels for cluster E×E do not occur at a smallest level!
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A Modified Model
L is poset with smallest element 0 where dissimilarities measured.

F(L) = order filters of L ordered by
F ≤ G ⇐⇒ G ⊆ F .
F 6= ∅, x ∈ F , x ≤ y impiles y ∈ F .
Principal filter: Fh = {y ∈ L : y ≥ h}.
F(L) is a complete distributive lattice.

DC: D : E×E → F(L) such that
D(a, b) = D(b, a)
D(a, a) ≤ D(a, b). Might want D(a, a) = F0.

Can take D(a, b) to be principal filters. Ultrametric if also
D(a, b) ≤ D(a, c) ∨ D(b, c) for all a, b, c ∈ E .

SD : L → Σ(E ) (Symmetric relations on E ).
Gives cluster candidates at level h.

SD(h) = {(a, b) : h ∈ D(a, b)}.
h ≤ k implies SD(h) ⊆ SD(k).
If L has a largest member 1, then SD(1) = E×E .

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h).

Melvin F. Janowitz A Connection Between Cluster Analysis and Formal Concept Analysis



A Modified Model
L is poset with smallest element 0 where dissimilarities measured.

F(L) = order filters of L ordered by
F ≤ G ⇐⇒ G ⊆ F .
F 6= ∅, x ∈ F , x ≤ y impiles y ∈ F .
Principal filter: Fh = {y ∈ L : y ≥ h}.
F(L) is a complete distributive lattice.

DC: D : E×E → F(L) such that
D(a, b) = D(b, a)
D(a, a) ≤ D(a, b). Might want D(a, a) = F0.

Can take D(a, b) to be principal filters. Ultrametric if also
D(a, b) ≤ D(a, c) ∨ D(b, c) for all a, b, c ∈ E .

SD : L → Σ(E ) (Symmetric relations on E ).
Gives cluster candidates at level h.

SD(h) = {(a, b) : h ∈ D(a, b)}.
h ≤ k implies SD(h) ⊆ SD(k).
If L has a largest member 1, then SD(1) = E×E .

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h).

Melvin F. Janowitz A Connection Between Cluster Analysis and Formal Concept Analysis



A Modified Model
L is poset with smallest element 0 where dissimilarities measured.

F(L) = order filters of L ordered by
F ≤ G ⇐⇒ G ⊆ F .
F 6= ∅, x ∈ F , x ≤ y impiles y ∈ F .
Principal filter: Fh = {y ∈ L : y ≥ h}.
F(L) is a complete distributive lattice.

DC: D : E×E → F(L) such that
D(a, b) = D(b, a)
D(a, a) ≤ D(a, b). Might want D(a, a) = F0.

Can take D(a, b) to be principal filters. Ultrametric if also
D(a, b) ≤ D(a, c) ∨ D(b, c) for all a, b, c ∈ E .

SD : L → Σ(E ) (Symmetric relations on E ).
Gives cluster candidates at level h.

SD(h) = {(a, b) : h ∈ D(a, b)}.
h ≤ k implies SD(h) ⊆ SD(k).
If L has a largest member 1, then SD(1) = E×E .

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h).

Melvin F. Janowitz A Connection Between Cluster Analysis and Formal Concept Analysis



A Modified Model
L is poset with smallest element 0 where dissimilarities measured.

F(L) = order filters of L ordered by
F ≤ G ⇐⇒ G ⊆ F .
F 6= ∅, x ∈ F , x ≤ y impiles y ∈ F .
Principal filter: Fh = {y ∈ L : y ≥ h}.
F(L) is a complete distributive lattice.

DC: D : E×E → F(L) such that
D(a, b) = D(b, a)
D(a, a) ≤ D(a, b). Might want D(a, a) = F0.

Can take D(a, b) to be principal filters. Ultrametric if also
D(a, b) ≤ D(a, c) ∨ D(b, c) for all a, b, c ∈ E .

SD : L → Σ(E ) (Symmetric relations on E ).
Gives cluster candidates at level h.

SD(h) = {(a, b) : h ∈ D(a, b)}.
h ≤ k implies SD(h) ⊆ SD(k).
If L has a largest member 1, then SD(1) = E×E .

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h).

Melvin F. Janowitz A Connection Between Cluster Analysis and Formal Concept Analysis



Boolean Dissimilarities

Assume E has k binary attributes. We want to construct
D : E×E → 2k , where the ith component of D(x , y) depends only
on the values x(i), y(i) of the ith attribute for x and y , If
x(i) 6= y(i), we want D(i) = 1, so we need only worry about
x(i) = y(i).

For x 6= y , there are only three possibilities:

(D1) D(i) = 0 if x(i) = y(i) = 1 and 1 otherwise

(D2) D(i) = 0 if x(i) = y(i) = 0 and 1 otherwise

(D3) D(i) = 1 if x(i) 6= y(i) and 0 otherwise.

For x = y , we could either take D(i) = 0, or∨
y{D(x , y) : x 6= y}.

Fact: Each Di is an ultrametric.
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Boolean Dissimilarity Example with E = {x , y , z}

Objects A1 A2 A3

x 1 1 0
y 1 0 1
z 0 1 0

D1 x y z

x 001 011 101
y 011 010 111
z 111 111 101

D2 x y z

x 110 111 110
y 111 101 111
z 110 111 010

D3 x y z

x 000 011 100
y 011 000 111
z 100 111 000

t t
t t

t
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�
��

@
@

@
@

@
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@@
{x , y} (011) {x , z} (101)

{x} (001){y} (010)

{x , y , z} (111)Display for D1
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Display for D2
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{x , y , z} (111)
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Display for D2
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Formal Concept Analysis – thumbnail sketch

Formal Context G,M sets with
⊥⊆ G×M binary relation called the incidence relation.
Members of G objects, M attributes.

A⊥ = {m ∈ M : a ⊥ m ∀a ∈ A}. B⊥ = {g ∈ G : b ⊥ g ∀b ∈ B}.
(A ⊆ G,B ⊆ M)

(A,B) formal concept if A = B⊥,B = A⊥.
Extent is A. Intent is B.

For concepts (A,B), (C ,D),
A ⊆ C iff D ⊆ B.

Order the concepts by inclusion of extents.
Get a complete lattice.

Nice reference: Introduction to Lattices and Order by Davey and
Priestley.
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The formal concept approach

Objects A1 A2 A3

x 1 1 0
y 1 0 1
z 0 1 0

G = {x , y , z} M = {A1,A2,A3}

A1⊥ = {x , y} A2⊥ = {x , z} A3⊥ = {y}

{x , y}⊥ = {A1,A2} ∩ {A1,A3} = {A1}
{x , z}⊥ = {A1,A2} ∩ {A2} = {A2}
{y}⊥ = {A1,A3}.

List of formal concepts:
({x , y , z}, ∅) ({x , y},A1) ({x , z},A2)
({y}, {A1,A3}) ({x}, {A1,A2})
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Comparison of the two approaches
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Complete-Linkage Algorithm

d : E×E → P a poset.

Complete-linkage algorithm:
Assume P is image of d .

1. For each minimal element m, form transitive closure of
Td(m). This is output at level m. Call it F (m).

2. Look at levels h that cover minimal members m

3. For each such h, form
∪{F (m) : m < h,m minimal }. These are all clusters at level
h. Add any pairs from T (h). Use complete linkage criterion
to merge any clusters.

4. continue the process.
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An example involving numerical data
Water Protein Fat Lactose Ash

1. Bison 86.9 4.8 1.7 5.7 0.9
2. Buffalo 82.1 5.9 7.9 4.7 0.78
3. Camel 87.7 3.5 3.4 4.8 0.71
4. Cat 81.6 10.1 6.3 4.4 0.75
5. Deer 65.9 10.4 19.7 2.6 1.4
6. Dog 76.3 9.3 9.5 3.0 1.2

Composition of Mammal Milk

Original data has 25 mammal species. Just wanted a short
example. Used dissimilarity taking values in Z5 where Z denotes
positive integers. Here is construction. Used squared Euclidean
distance on each attribute to construct five separate dissimilarities,
then represented them as columns in a single dissimilarity matrix
having 15 rows and 5 columns. We use the vector ordering
inherited from Z5. To simplify notation, we just rank ordered each
column of the matrix. This then produced a dissimilarity taking
values in a subposet of Z5, as displayed in the following table.
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Label object pair Water Protein Fat Lactose Ash

m1 12 3 3 8 5 4
m2 13 2 5 2 4 6
h1 14 4 11 6 6 5
h2 15 13 12 14 13 12
h3 16 9 9 9 12 8
m3 23 5 6 5 1 3
m4 24 1 8 1 2 1
h4 25 12 10 11 10 13
m5 26 6 7 1 8 9
h5 34 7 14 3 3 2
h6 35 14 15 13 11 15
h7 36 10 13 7 9 11
m6 45 11 1 12 9 14
m7 46 4 2 4 7 10
m8 56 8 4 10 3 7
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Non-minimal Clusters of the Output

For purposes of comparison, standard complete linkage
clustering yields the proper clusters 13, 24, 246, 12346.
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