GENERALIZED OLIGARCHIES by Melvin F. Janowitz

DIMACS, Rutgers University Piscataway, NJ 08854

American Mathematical Society Meeting #1092 at University of Louisville October 5-6, 2013 Internet version: http: // home.dimacs.rutgers.edu/~melj/amstalktr.pdf L is a finite lattice.

Partially ordered set.

All a, b have a join $(a \lor b)$ and meet $(a \land b)$. *L* represents possible actions or decisions.

 $L^n = L \times L \times \cdots \times L$ (*n* factors)

Defn: A profile $\pi = (x_1, x_2, \ldots, x_n)$.

Idea: You are getting advice from *n* experts.

Entry x_i is advice from expert *i*.

Defn: A consensus function is a mapping $F: L^n \to L$.

 $F(\pi)$ yields the summary advice.

Can think of L as representing partitions of a set, or weak orders, or at least three atoms representing choices with added 0 and 1. These are all atomistic simple finite lattices.

atom: An element that covers 0. atomistic: Every element is join of atoms. simple: Only trivial congruences. $F: L^n \to L$ where L is a finite atomistic lattice.

J = set of atoms.

Terminology:

For profile π and $a \in L$, define $N_a(\pi) = \{i : a \leq \pi(i)\}$. For $x \in L$, $\pi_x = (x, x, \dots, x)$. Define F^0 by $F^0(\pi) = 0$ for all profiles π . Paretian: $N_a(\pi) = N \Rightarrow a \leq F(\pi)$. Decisive: If $N_a(\pi) = N_a(\pi')$, then $a \leq F(\pi) \Leftrightarrow a \leq F(\pi')$. Neutral monotone: For $a, a' \in L$, if $N_a(\pi) \subseteq N_{a'}(\pi')$, then $a \leq F(\pi) \Rightarrow a' \leq F(\pi')$. Oligarchy: $\exists M \subseteq N$ such that $F(\pi) = \bigwedge \{\pi(j) : j \in M\}$. Think of appointing a committee M that jointly acts as a dictator.

Residual map $F(\pi_1) = 1$ and F is a meet homomorphism.

Theorem: (Leclerc and Monjardet) L is a finite simple atomistic lattice with cardinality > 2. $F: L^n \to L$. Following are equivalent:

- F is decisive and Paretian.
- **2** F is neutral monotone but not F^0 .
- F is a meet homomorphism and $F(\pi) \ge \bigwedge_{i} \{\pi(j)\} \ \forall \pi$.
- F is a residual map and $F(\pi_a) \ge a$ for all atoms a.
- \bigcirc F is an oligarchy.

From Aggregation and Residuation, Order **30**, 2013, 261–268. Wish to extend this to direct products of simple lattices. Inspiration: Boston Marathon bombing, or weather events like Hurricane Sandy or the World Trade Center attack.

Finite Atomistic Lattice L

Motivation: Want to apply Oligarchies to several problems at the same time. They may or may not independently reach their decisions.

External idea: Take L_1, L_2, \ldots, L_k to be finite nondistributive atomistic simple lattices, with $L = L_1 \times L_2 \times \cdots \times L_k$. Define consensus functions F_i on L_i each with the same value of n. Let π_i be profile on $(L_i)^n$ for each i with $\pi = (\pi_1, \pi_2, \ldots, \pi_k)$. Define $F : L^n \to L$ by $F(\pi) = (F_1(\pi_1), F_2(\pi_2), \ldots, F_k(\pi_k))$.

More Terminology:

Defn: For $a, b \in L$, write $a \nabla b$ if $(a \lor x) \land b = x \land b \forall x$.

Defn: For *a*, *b* atoms write $a\delta b$ if $a \neq b$ and for some $x \in L$,

 $a < b \lor x$ and $a, b \not\leq x$.

 ∇ and $\delta:$

Fact: For a, b distinct atoms, $a\nabla b$ fails $\Leftrightarrow b\delta a$. Proof: $(a \lor x) \land b > x \land b$ means $b \le a \lor x$ and $b \le x$. Let δ^t denote transitive closure of δ .

Fact: *L* is simple iff every pair of atoms is connected by δ^t .

Defn: s in a lattice is standard if $\forall x, y$,

- $(s \lor x) \land y = (s \land y) \lor (x \land y)$. *s* induces a congruence Θ_s by $x\Theta_s y$ if $x \lor y = (x \land y) \lor s_1$ for some $s_1 \le s$.
- Fact: Every congruence on a finite atomistic lattice is generated by a standard element.
- Fact: If ∇ is symmetric, then every congruence is generated by a central element *z*.
- Defn: z is central iff it has a complement z' and L is isomorphic to $[0, z] \times [0, z']$ under the mapping $x \mapsto (x \land z, x \land z')$. Theorem: If ∇ is symmetric, then L is the direct product of simple atomistic lattices.

 $F: L^n \to L$ where L is a finite atomistic lattice that is a direct product of k simple lattice each with cardinalty ≥ 3 .

Let z_1, z_2, \ldots, z_k be the atoms of the center of L,

so each $[0, z_i]$ is simple.

Defn:For each profile π , let $\pi_i = \pi \wedge \pi_{z_i}$.

Defn:For each z_i , define F_i on $[0, z_i]$ by $F_i(\pi_i) = F(\pi) \wedge z_i$. If $\pi_i = \pi'_i \forall i$, then $\pi = \pi'$, and there is no issue. For this to make sense for a single index i, need F summand compatible in that

$$\pi_i = \pi'_i$$
 implies $F(\pi) \wedge z_i = F(\pi') \wedge z_i$.

Lemma: If
$$F(\pi \wedge \pi_{z_i}) = F(\pi) \wedge F(\pi_{z_i})$$
 and $F(\pi_{z_i}) \ge z_i$,

or if F is neutral monotone and not F^0 ,

or if
$$F(\pi_{z_i}) = z_i \forall i$$
,

then F is summand compatible.

Distributive simple atomistic lattices have cardinality ≤ 2 , so *L* is the direct product of a Boolean lattice and some simple lattices each having cardinality > 2.

Theorem: (Improved result) L is a finite atomistic lattice that is the direct product of simple lattices each having cardinality > 2. $F: L^n \to L$. Following are equivalent:

 \bigcirc F is decisive, Paretian and summand compatible.

- **2** F is neutral monotone but not F^0 .
- **③** *F* is a meet homomorphism and $F(\pi) \ge \bigwedge_i \{\pi(j)\} \forall \pi$.
- F is a residual map and $F(\pi_a) \ge a$ for all atoms a.
- F is a generalized oligarchy in the sense that for every atom z_i of the center of L, each induced consensus function F_i defined on [0, z_i] by F_i(π ∧ π_{z_i}) = F(π) ∧ z_i is an oligarchy.

- Suppose there is a meet homomorphism from a finite atomistic lattice *L* onto a direct product of simple lattices each having cardinality > 2. What then?
- Does any of this extend to finite subdirect products of simple lattices, each having cardinality > 2.
- What about finite lattices that are not atomistic or atomistic but not ∇-symmetric?
- Does a lattice theoretic approach yield any insight into other consensus functions?

That's all Folks!