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Abstract

This paper will demonstrate the natural role played by weak orders in the de-

velopment of clustering algorithms for data having only ordinal significance.

Within this weak order setting, any discussion of continuity becomes superflu-

ous. The results are based on a talk given at the Classification Society meeting

June 16-18, 2011.

1 Background terminology

A working knowledge of cluster analysis is assumed, but the basic terminology and
notation will be quickly presented here. In its basic form, the input to a cluster
analysis problem might be a pair (P, A), where P is a finite nonempty set, and A

is a collection of attributes (numerical, logical, ordinal) that the objects might or
might not have, or might have in varying degrees. The goal is to discover any hidden
structures that the attributes might impose on P . Typically this is expressed as
a partition of P , or a nested sequence of partitions with the top one having only a
single class. It is possible to proceed directly from attributes to the output partitions,
but often there is an intermediate step: the construction of a dissimilarity coefficient
(DC). We let D(P ) denotes the set of DCs on P . We shall not discuss the actual
construction of a DC, but will content ourselves with defining such an object. Further
background in cluster analysis may be obtained from sources like [2]. The symbol <+

0

will denote the non-negative reals equipped with the usual ordering.

Definition 1.1 A dissimilarity coefficient is a mapping d : P × P → <+
0 satisfying

• d(x, x) = 0 for all x ∈ P

• d(x, y) = d(y, x) ≥ 0 for all x, y ∈ P .
• d is called a definite DC if d(a, b) = 0 implies a = b.

The DC d is called an ultrametric if also
• d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ P .

Notation Let U(P ) denote the set of ultrametrics on P , and partially order
both D(P ) and U(P ) by the rule d1 ≤ d2 if and only if d1(x, y) ≤ d2(x, y) for all
x, y ∈ P . Note that U(P ) is closed under the formation of arbitrary existing joins.
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Notation Let Σ(P ) denote the set of reflexive symmetric relations on P , par-
tially ordered by R1 ⊆ R2 if and only if aR1b =⇒ aR2b, and E(P ) the set of equiva-
lence relations on P with the same ordering.

Definition 1.2 A numerically stratified clustering (NSC) is a mapping C : P ×P →
Σ(P ) that satisfies

• h ≤ k =⇒ C(h) ⊆ C(k).
• C(h) = P × P for some h ∈ <+

0 .

• For each h ∈ <+
0 , there exists a k > h such that C(h) = C(k).

Corresponding to any DC d, there is an NSC Td defined by

Td(h) = {(a, b) : d(a, b) ≤ h}.

We then have (See [6], Theorem 2.9, page 20):

The fundamental T-correspondence. The correspondence d 7→ Td is a one-one
order inverting correspondence between DCs and NSCs whose inverse is given by
C 7→ dC, where dC(a, b) = min{h ∈ <+

0 : (a, b) ∈ C(h)}.

Definition 1.3 The NSC C is called a dendrogram if C(h) is an equivalence relation
for all h.

Restating Theorem 2.18 of [6], we have

Theorem 1.4 The DC d is an ultrametric if and only if Td is a dendrogram.

We may now formally define a cluster method to be a mapping F : D(P ) → D(P )
or when appropriate from D(P ) to U(P ). We shall concentrate on studying DCs d

having only ordinal significance in that the actual values taken by d are not significant,
only whether d(a, b) < d(x, y). In such situations, it makes no sense to form things
like a mean or a standard deviation or worry about things like ratios, but there remain
many possible and useful cluster methods.

2 Single-Linkage clustering

Using the Fundamental T -correspondence, we may define a cluster method F by

[T (Fd)](h) = γ([Td])(h) for all h (1)

where γ denotes the transitive closure operator. This is single-linkage clustering

(denoted SL).

2



With this definition of cluster method, SL is the unique method that is idempo-
tent and isotone, and whose image is the set of all ultrametrics on P . For a proof of
this, see Theorem 2.27 of [6], and the discussion immediately preceding it.

• idempotent: F = F ◦ F .
• isotone: d1 ≤ d2 =⇒ F (d1) ≤ F (d2).

This result shows that SL follows entirely from ordinal considerations. Yet SL became
rather famous in [7] for the fact that it is continuous, and it is the only cluster method
that produces an ultrametric and satisfies the conditions outlined in Chapter 9 of [7]
(See page 91 of [7]). But this leaves us with a dilemma. Continuity involves a
metric, and is concerned with the actual values of any input DC. But if the input
DC only has ordinal significance, we are assuming that the values of the input DC
are not significant, only whether one of them is smaller or larger than a second one.
This led to an animated discussion in the cluster analysis literature shortly after the
publication of [7]. We shall not rehash this now, but will find it useful to briefly
discuss the nature of continuous cluster methods. We begin this by recalling the
metric used by Jardine and Sibson. The distance between the DCs d and d′ is given
by

∆0(d, d′) = max{|d(a, b) − d′(a, b)| : a, b ∈ P}. (2)

Definition 2.1 Using a sequence definition of limits, we say that the cluster method
F is continuous if dn → d forces F (dn) → F (d). We say that F is right continuous if
dn → d with d ≤ dn forces F (dn) → F (d). Left continuity has the expected definition.

Definition 2.2 A mapping θ on <+
0 is said to be an order automorphism if it is

one-one and onto, and h ≤ k ⇐⇒ θ(h) ≤ θ(k). The cluster method F is said to be
monotone equivariant if F (θd) = θF (d) for every order automorphism θ of <+

0 . For
dealing with ordinal data, one of the primary assumptions of [7] is that one should
use monotone equivariant (ME) cluster methods.

For ME cluster methods, the next theorem characterizes continuity. See the
discussion preceeding Theorem 4.13 of [6] for a proof. Left continuity is characterized
in Theorem 4.11 of [6].

Theorem 2.3 For ME cluster methods F , the following are equivalent:

1. F is flat in the sense that there is a mapping κ on relations such that
TF (d)) = κ ◦ Td for all d ∈ D(P ).

2. F is continuous

3. F is right continuous

4. F (θd) = θF (d) for all 0-preserving isotone mappings θ on <+
0 .

3



It follows that continuity is not that closely tied to single-linkage clustering,
and follows from ordinal considerations. Though this is of interest, it still does not
explain the connection between d and d′ being close with respect to the ∆0-metric,
and various ordinal conditions. We turn now to such a consideration. Unfortunately,
the basic ideas have not come to the author in any proper logical sequence. The key
idea has come rather recently, but is basic to an earlier presentation. The author can
only apologize to the reader for this.

Shortly after the book [7] was published, Robin Sibson published a paper [9] in
which he described and advocated another more general method of dealing with data
having only ordinal significance. We now introduce this idea.

Definition 2.4 The DCs d and d′ are called globally ordinal equivalent if there is an
order automorphism θ of <+

0 such that d = θ(d′). This defines an equivalence relation
on D(P ), and is denoted d ∼ d′. We say that a cluster method F preserves order
equivalence if d ∼ d′ =⇒ F (d) ∼ F (d′). Two cluster methods F, G are called order
similar and denoted F ∼ G if for each d ∈ D(P ), F (d) ∼ G(d). Note that no definite
DC can be order equivalent to a DC that is not definite.

Theorem 2.5 Let F be a cluster method.

1. If F is monotone equivariant then the image of Fd is contained in the image of
d for any DC d.

2. Let F preserve order equivalence. Then F is order similar to a monotone
equivariant cluster method G if and only if F compresses information in the
sense that for any d ∈ D(P ), F (d) cannot have more levels in its image than
does d.

Proof: Lemma 3.4 lf [6] and Theorem 4 of [3].

Remark 2.6 It is worth noting that every monotone equivariant cluster method
preserves order equivalence, but the two concepts are not the same.

3 Metric and Ordinal Considerations

Let d ∈ D(P ), the DCs on P . A relation R is called a threshold relation for d if
R = Td(h) for some h ∈ <+

0 , and R ⊂ P × P . Let

image (d) = h0 = 0 < h1 < · · ·ht < ht+1
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with threshold relations R0 ⊂ R1 ⊂ · · ·Rt ⊂ P × P . Then with

σ(d) = {R0, R1, . . . Rt},

σ(d) together with the image of d completely specifies d. Recall that d ∼ d′ if
σ(d) = σ(d′).

Note: The key to understanding ordinal properties of convergence is provided
by the notion of -. The idea is that d - d′ (d′ % d) if d(a, b) < d(x, y) implies
d′(a, b) < d′(x, y). Taking contrapositives, we have that

d - d′ ⇐⇒ d′(a, b) ≤ d′(x, y) implies d(a, b) ≤ d(x, y). (3)

Definition 3.1 Let d ∈ D(P ) have image h0 = 0 < h1 < · · · < ht < ht+1. The mesh

width of d is defined by

µ(d) =
1

2
min{hi − hi−1 : 1 ≤ t + 1} (4)

Fact: Let d - d′. Then d′(a, b) = 0 =⇒ d(a, b) = 0.

Proof: Suppose d(a, b) > 0. Then d(x, x) < d(a, b) would force d′(x, x) <

d′(a, b), a contradiction.

Fact: We note that d ∼ d′ if both d - d′ and d′ - d. Thus d ∼ d′ forces Td(0) =
Td′(0) and d(a, b) < d(x, y) ⇐⇒ d′(a, b) < d′(x, y). Thus d is order equivalent to d′,
and there is no conflict of notation with that of global order equivalence as introduced
by Sibson.

Lemma 3.2 If d - d′, then Td(0) = Td′(k) for some k with 0 ≤ k < µ(d).

Proof: Let k = max{h : d′(a, b) = h and d(a, b) = 0}. We may choose a, b so that
d′(a, b) = k and d(a, b) = 0. Let d′(x, y) ≤ k. If d(x, y) > 0, then d(a, b) < d(x, y)
forces k = d′(a, b) < d′(x, y), a contradiction. Thus Td(0) = k, as claimed. This also
shows that k < µ(d).

Fact: If d - d′, then Td(0) = R∅ =⇒ Td′(0) = R∅; also d′(a, b) = 0 =⇒ d(a, b) = 0,
so Td′(0) ⊆ Td(0). Here R∅ = {(x, x) : x ∈ P}.

Theorem 3.3 Let d, d′ ∈ D(P ). Then d - d′ is equivalent to every threshold relation

of d being a threshold relation of d′.

5



Proof: Assume first d - d′. We have already noted that Td(0) = Td(k) with
0 ≤ k < µ(d). Thus we must show that corresponding to each h ≥ 0 such that
Td(h) 6= R∅, there is a k ≥ 0 such that Td(h) = Td ′(k). If R = Td(h), let
k = max{d′(s, t) : sRt}, and choose a, b ∈ P so that aRb and d′(a, b) = k. Evidently
wRz =⇒ d′(w, z) ≤ k, so Td(h) ⊆ Td′(k). If d′(x, y) ≤ k, then d′(x, y) ≤ d′(a, b), so
d(x, y) ≤ d(a, b). Since d(a, b) ≤ h, this shows that Td′(k) ⊆ Td(h).

Now assume that each threshold relation of d is a threshold relation of d′. Let
R0 ⊂ R1 ⊂ · · · ⊂ Rt be the threshold relations of d, and R′

0 ⊂ R′
1 ⊂ · · · ⊂ R′

u

the threshold relations of d′. Let Ri occur at level hi, d(a, b) = hi, and d(a, b) <

d(x, y). We are to show that d′(a, b) < d′(x, y). By hypothesis, Ri = R′
α(i), with

R′
α(i) occurring at level kα(i). Since (a, b) ∈ Ri = R′

α(i), it is clear that d′(a, b) ≤ kα(i).

On the other hand, d(x, y) > hi implies that (x, y) 6∈ Ri, so (x, y) 6∈ R′
α(i) and

d′(x, y) > kα(i). Thus d′(a, b) ≤ kα(i) < d′(x, y), thus completing the proof.

Fact: For any 0-preserving isotone mapping θ on <+
0 , θd - d.

Proof: This just says that θd(a, b) < θd(x, y) =⇒ d(a, b) < d(x, y).

Theorem 3.4 Let d, d′ ∈ D(P ) and 0 < ε < µ(d). If d - d′, there exists d′′ ∈ D(P )
such that d′ ∼ d′′ and ∆0(d, d′′) < ε. Thus if [[d′]] is the equivalence class of d′ under
∼, the d - d′ iff there is a sequence dn of [[d′]] with limit d.

Example 3.5 Idea of Proof: Let P = {a, b, c, e, f}, and suppose d, d′ are given as
follows:

d a b c e f

a 0 5 0 9 5
b 5 0 5 0 9
c 0 5 0 5 9
e 9 0 5 0 5
f 5 9 9 5 0

d′ a b c e f

a 0 1 0.45 5 1
b 1 0 3 0.8 5
c 0.45 3 0 1 5
e 5 0.8 1 0 1
f 1 5 5 1 0

Note that µ(d) = 2 since the image of d is {0, 5, 9}. Evidently, ∆0(d, d′) = 4. Let’s
construct d′′ so that d′ ∼ d′′ and ∆0(d, d′′) = 0.5. We note that

σ(d) = [R0 ⊂ R1 ⊂ R2; h0 = 0 < h1 = 5 < h2 = 9]
σ(d′) = [R′

0 ⊂ R′
1 ⊂ R′

2 ⊂ R′
3 ⊂ R′

4 ⊂ R′
5; 0 < 0.45 < 0.8 < 1 < 3 < 5]

We see that d - d′ since R0 = R′
2, R1 = R′

4, R2 = R′
5. We present an example of

a possible d′′ and indicate how it was constructed. This corrects a minor typo that
occurs on p. 88 if [6].

d′′ a b c e f

a 0 4.5 0.45 9 4.5
b 4.5 0 5 0.5 9
c 0.45 5 0 4.5 9
e 9 0.5 4.5 0 4.5
f 4.5 9 9 4.5 0
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The idea now is to note that d′ ∼ d′′ since there is an order automorphism θ of <+
0

such that d′′ = θ(d′). Note that θ sends (0, 0.45, 0.8, 1, 3, 5) to (0, 0.45, 0.5, 4.5, 5, 9).
The reader can verify that ∆0(d, d′′) = 0.5. We could clearly have adjusted the levels
in d′′ to make it as close as we wanted to d. We could now present a proof for the
Theorem, but will not do so. Instead, we leave it as an exercise for the reader.

Fact: If dn has limit d, then there exists a positive integer N such that n ≥ N

forces d - dn.

Theorem 2.3 characterizes continuity for monotone equivariant cluster methods.
It seems natural to see what can be said for cluster methods that preserve order
equivalence. Theorem 3.6 begins this process.

Theorem 3.6 Let F preserve order equivalence. Then F continuous forces F to
preserve -, but the converse fails.

Proof: We assume F is a continuous cluster method that preserves order equiva-
lence, and will prove that F necessarily preserves -. Let d, g ∈ D(P ) with d - g. By
Theorem 3.4, there must be a sequence gn of DCs having the property that gn → d

and each gn ∼ g. By continuity, F (gn) has limit F (d), and by hypothesis, each
F (gn) ∼ F (g). It follows that F (d) - F (g). The proof would be complete if we could
produce an example of a cluster method that preserves - but is not continuous. Such
an example is presented on p. 90 of [6].

Definition 3.7 It now seems reasonable to call a cluster method F order continuous

if it is true that d - d′ =⇒ F (d) - F (d′).

The reader might now assume that we are about to embark on a study of prop-
erties of order continuous cluster methods. Not so! We choose instead to change
course in such a way as to demonstrate that we need not even be considering issues
that involve continuity when we are faced with ordinal data.

4 A connection with weak orders

Consider the action of a cluster method F that preserves ordinal equivalence. If
d ∼ d′, then F (d) ∼ F (d′), so we may think of F as acting on an equivalence class of
∼. It turns out that these equivalence classes can be endowed with an interesting and
natural partial order. If we let [[d]] denote the equivalence class of ∼ generated by
the DC d, we may define [[d]] ≤ [[d′]] ⇐⇒ d - d′. one has to show that this is well-
defined and a partial order. An indication of what is involved occurs in [6], Remark
4.23, p. 90. The point is that if d1 - d2 ∼ d3 - d4 ∼ d1, then d1, d2, d3, d4 all lie in
the same equivalence class. We leave the details to the reader. The point is that we

7



now have a partially ordered set. To establish some notation, let Wd denote the weak
order associated with [[d]]. In other words, (a, b)Wd(x, y) whenever d(a, b) ≤ d(x, y).
There is also what is called a strict weak order W s

d
associated with [[d]]. It is defined

by (a, b)W s

d
(x, y) whenever d(a, b) < d(x, y). Thus d - d′ is equivalent to Wd′ ≤ Wd,

which in turn is equivalent to W s

d
≤ W s

d′ . The fact that the - partial ordering of
equivalence classes of order similarity is equivalent to the usual ordering of associated
strict weak orders is what leads us to believe that this might be the correct way of
dealing with dissimilarities defined on data having ordinal significance.

Remark 4.1 The set U(P ) of ultrametrics has some important properties in D(P )
when they are each given their usual partial order. By [6], Lemma 2.21, p. 23, U(P )
is closed under the formation of arbitrary existing joins, and every d ∈ D(P ) is the
meet of a family of ultrametrics. This suggests that a study of properties of Wu for
u an ultrametric might be worthwhile.

Remark 4.2 Weak orders on a finite set. The poset of weak orders on a finite
set is investigated and characterized in [5]. References to earlier related work by other
authors are given therein. A thorough treatment may be found in [8]. We mention
that the weak orders on a finite set form what is called a semiBoolean algebra. These
are defined and investigated in [1]. Essentially, we are dealing with a finite join
semilattice in which every principal filter is a Boolean algebra. Let’s see how this
applies to the structure under consideration. We are given a finite nonempty set
P . We will be looking at a structure of the form 2 × L, where 2 = {0, 1} is a two
element chain, and L is the poset of weak orders on the two element subsets of P .
The idea is to map d into (0, Wd) if d is not definite and into (1, Wd) d is definite.
Note that d - d+1, where [d+1](a, b) = d(a, b)+1. For example, if d is not definite,
and σ(d) = {R0, R1}, then d + 1 is definite with σ(d + 1) = {R∅, R0, R1}. The DCs
d and d + 1 are not order equivalent, d - d + 1, but not d + 1 - d. The model
we have just described is just a theoretical model in which properties of clustering
algorithms might be developed. What remains is the development of efficient scalable
cluster algorithms within the model. It turns out that obvious modifications of some
of the algorithms described some time ago in [4] can be used to start the process.
The reader should note that issues involving continuity are no longer present — even
though there is a fundamental connection with them.

Definition 4.3 Let’s make sure we agree on terminology. A weak order on a set P

is a binary relation W on P having the property that it is

• reflexive in that xWx for all x ∈ P .

• transitive in that xWy, yWz together imply that xWz for all x, y, z ∈ P .
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• complete xWy or yWx for every pair {x, y} of members of P .

A strict weak order also has the property that

• For any x, y ∈ P , xWy implies that yWx fails .

Weak orders are partially ordered by the rule W1 ≤ W2 ⇐⇒ xW1y =⇒ xW2y.
Corresponding to any weak order W , there is a strict weak order W s defined by
xW sy ⇐⇒ xWy but yWx fails. Note that W1 ≤ W2 ⇐⇒ W s

2 ≤ W s
1 . The

ordering induced by - corresponds to the usual ordering of the induced strict weak
orders.

We need to at least indicate how cluster methods might be used with dissimilar-
ities of the form dW . If d ∈ D(P ) has only ordinal significance, we can easily obtain
dW by simply rank ordering the image of the restriction of d to the two element
subsets of P . We also need to remember whether there is a pair {a, b} with a 6= b

and d(a, b) = 0. It turns out that a number of possible algorithms were outlined in
[4], and called type 1 cluster methods therein. These are all agglomerative cluster
methods, though the connection with preservation of - was not made in this earlier
paper. At the ith stage we have constructed a partition Pi of P , and we need to
merge classes of Pi to form a partition Pi+1 � Pi by means of links from a reflexive
symmetric relation Li. An Li-link between disjoint subsets A, B of P is a pair x, y

with x ∈ A, y ∈ B and xLiy. The biggest change to be made involves the output
list of partitions. Since the input is simply a weak order, there seems little point in
keeping track of output levels. Here are some typical methods as outlined in [4].

1. k-clustering (k a positive integer): Merge clusters A, B if at least k or all
possible Li-links have been made between A and B. For k =1, this is single-
linkage clustering, and for k sufficiently large it is a version of complete linkage.

2. u-clustering (0 < u ≤ 1): Merge clusters A, B if at least a portion u|A||B| of
the links between A and B have been made. For u close to 0 this is single
linkage, and for u = 1 a version of complete linkage. This is commonly called
proportional-linkage clustering. It was apparently due originally to [10], but did
not gain wide acceptance due to its tendency to produce what are commonly
called reversals in the literature. In the present context, this does not appear
to be a problem.

For the moment, we close by presenting an example that will hopefully illus-
trate the potential for u–clustering to play a role somewhat similar to that played
traditionally by average linkage clustering. The data appears as part of the Clustan
clustering. It consists of percentage contents of various mammal milk samples. Note
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the rather dramatic differences in scale for the attributes. We proceeded by normaliz-
ing the data so that each attribute had smallest value 0 and largest value 1. We then
used squared Euclidean distance as the dissimilarity. It is hoped that this DC has
ordinal significance, but it is difficult to assign an exact meaning to each numerical
value. We present the 4 cluster cutoff for: A. average linkage, B. complete linkage,
and u-clustering with C. u = .5 and D. u = .6.

Object Water Protein Fat Lactose Ash
1. Bison 86.9 4.8 1.7 5.7 0.9
2. Buffalo 82.1 5.9 7.9 4.7 0.78
3. Camel 87.7 3.5 3.4 4.8 0.71
4. Cat 81.6 10.1 6.3 4.4 0.75
5. Deer 65.9 10.4 19.7 2.6 1.4
6. Dog 76.3 9.3 9.5 3 1.2
7. Dolphin 44.9 10.6 34.9 0.9 0.53
8. Donkey 90.3 1.7 1.4 6.2 0.4
9. Elephant 70.1 3.6 17.6 5.6 0.63

10. Fox 81.6 6.6 5.9 4.9 0.93
11. GuineaPig 81.9 7.4 7.2 2.7 0.85
12. Hippo 90.4 0.6 4.5 4.4 0.1
13. Horse 90.1 2.6 1 6.9 0.35
14. Llama 86.5 3.9 3.2 5.6 0.8
15. Monkey 88.4 2.2 2.7 6.4 0.18
16. Mule 90 2 1.8 5.5 0.47
17. Orangutan 88.5 1.4 3.5 6 0.24
18. Pig 82.8 7.1 5.1 3.7 1.1
19. Rabbit 71.3 12.3 13.1 1.9 2.3
20. Rat 72.5 9.2 12.6 3.3 1.4
21. Reindeer 64.8 10.7 20.3 2.5 1.4
22. Seal 46.4 9.7 42 0 0.85
23. Sheep 82 5.6 6.4 4.7 0.91
24. Whale 64.8 11.1 21.2 1.6 1.7
25. Zebra 86.2 3 4.8 5.3 0.7

Table 1: Mammal milk data table

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4
A 1 2 3 7 8 9 10 12 13 14 15 16 17 23 25 4 6 11 18 20 5 19 21 24 7 22
B 1 3 8 9 12 13 14 15 16 17 25 2 4 6 10 11 18 20 23 5 19 21 24 7 22
C 1 2 3 9 10 11 14 18 23 25 4 5 6 19 20 21 24 8 12 13 15 16 17 7 22
D 1 2 3 7 8 9 10 12 13 14 15 16 17 23 25 4 6 11 18 20 5 19 21 24 7 22
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