Rogers–Ramanujan type identities

Drew Sills

Georgia Southern University

Mini-symposium on the Legacy of Ramanujan
NIST, June 2, 2015
Work of D.S. during 2014–2015 has been partially supported by grant H98230-14-1-0159 from the National Security Agency.
L. Euler (1707-1783)
S. Ramanujan (1887–1920)
L. J. Rogers (1862–1933)
\[
\sum_{n \geq 0} \frac{q^n}{(1 - q)(1 - q^2) \cdots (1 - q^n)} = \prod_{m=1}^{\infty} \frac{1}{1 - q^m} \quad \text{(Euler)}
\]
\[
\sum_{n \geq 0} \frac{q^n}{(1 - q)(1 - q^2) \cdots (1 - q^n)} = \prod_{m=1}^{\infty} \frac{1}{1 - q^m} \quad \text{(Euler)}
\]

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(1 - q)^2(1 - q^2)^2 \cdots (1 - q^n)^2} = \prod_{m \geq 1} \frac{1}{1 - q^m} \quad \text{(Euler)}
\]
\[
\sum_{n \geq 0} \frac{q^n}{(1 - q)(1 - q^2) \cdots (1 - q^n)} = \prod_{m=1}^{\infty} \frac{1}{1 - q^m} \tag{Euler}
\]

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(1 - q)^2(1 - q^2)^2 \cdots (1 - q^n)^2} = \prod_{m \geq 1} \frac{1}{1 - q^m} \tag{Euler}
\]

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(1 - q)(1 - q^2) \cdots (1 - q^n)} = \prod_{m \geq 1} \frac{1}{1 - q^m} \quad m \equiv 1 \text{(mod 5)}
\tag{Rogers}
\]
Rising q-factorial notation

$$(a)_n = (a; q)_n := \prod_{j=0}^{n-1} (1 - a q^j),$$
Rising q-factorial notation

$$(a)_n = (a; q)_n := \prod_{j=0}^{n-1} (1 - aq^j),$$

$$(a)_{\infty} = (a; q)_{\infty} := \prod_{j \geq 0} (1 - aq^j),$$
Rising q-factorial notation

\[(a)_n = (a; q)_n := \prod_{j=0}^{n-1} (1 - aq^j),\]

\[(a)_{\infty} = (a; q)_{\infty} := \prod_{j \geq 0} (1 - aq^j),\]

\[(a_1, a_2, \ldots, a_r; q)_{\infty} := \prod_{j=1}^{r} (a_j; q)_{\infty}.\]
For $|ab| < 1$,

$$f(a, b) := \sum_{n \in \mathbb{Z}} a^{n(n+1)/2} b^{n(n-1)/2}.$$
Ramanujan’s “theta” function

For $|ab| < 1$,

\[f(a, b) := \sum_{n \in \mathbb{Z}} a^{n(n+1)/2} b^{n(n-1)/2}. \]

Jacobi’s triple product identity

\[f(a, b) = (a, b, ab; ab)_\infty. \]
Ramanujan’s notation

\[f(-q) := f(-q, -q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{(3n-1)/2} = (q)_{\infty} \]
Ramanujan’s notation

\[f(-q) := f(-q, -q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(3n-1)/2} = (q)_\infty \]

\[\varphi(-q) := f(-q, -q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} = \frac{(q)_\infty}{(-q)_\infty} \]
Ramanujan’s notation

\[f(-q) := f(-q, -q^2) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(3n-1)/2} = (q)_\infty \]

\[\varphi(-q) := f(-q, -q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} = \frac{(q)_\infty}{(-q)_\infty} \]

\[\psi(-q) := f(-q, -q^3) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n(2n-1)} = \frac{(q^2; q^2)_\infty}{(-q; q^2)_\infty} \]
Rogers–Ramanujan identities

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty}.
\]

\[
\sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_\infty}.
\]
\[
\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty}.
\]

\[
\sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_\infty}.
\]

Ramanujan really enjoyed identities of this type.
Rogers–Ramanujan identities

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty}.
\]

\[
\sum_{n \geq 0} \frac{q^{n(n+1)}}{(q)_n} = \frac{f(-q, -q^4)}{(q)_\infty}.
\]

Ramanujan really enjoyed identities of this type. Over 50 are recorded in the lost notebook.
If \((\alpha_n(a, q), \beta_n(a, q))\) satisfies

\[
\beta_n = \sum_{r=0}^{n} \frac{\alpha_r}{(q)_{n-r}(aq)_{n+r}},
\]

then \((\alpha_n, \beta_n)\) is called a Bailey pair with respect to \(a\),
Bailey pairs, Bailey’s lemma

If \((\alpha_n(a, q), \beta_n(a, q))\) satisfies

\[
\beta_n = \sum_{r=0}^{n} \frac{\alpha_r}{(q)_{n-r} (aq)_{n+r}},
\]

then \((\alpha_n, \beta_n)\) is called a Bailey pair with respect to \(a\), and

\((\alpha'_n(a, q), \beta'_n(a, q))\) is also a Bailey pair, where

\[
\alpha'_r(a, q) = \frac{(\rho_1)_r (\rho_2)_r}{(aq/\rho_1)_r (aq/\rho_2)_r} \left(\frac{aq}{\rho_1 \rho_2} \right)^r \alpha_r
\]

and

\[
\beta'_n(a, q) = \sum_{j=0}^{n} \frac{(\rho_1)_j (\rho_2)_j (aq/\rho_1 \rho_2)_{n-j}}{(aq/\rho_1)_n (aq/\rho_2)_n (q)_{n-j}} \left(\frac{aq}{\rho_1 \rho_2} \right)^j \beta_j(a, q).
\]
Limiting cases of Bailey’s lemma

\[
\sum_{n \geq 0} q^{n^2} \beta_n(1, q) = \frac{1}{f(-q)} \sum_{r \geq 0} q^{r^2} \alpha_r(1, q) \quad \text{(PBL)}
\]

\[
\sum_{n \geq 0} q^{n^2} (-q; q^2)_n \beta_n(1, q^2) = \frac{1}{\psi(-q)} \sum_{r \geq 0} q^{r^2} \alpha_r(1, q^2) \quad \text{(HBL)}
\]

\[
\sum_{n \geq 0} q^{n(n+1)/2} (-1)^n \beta_n(1, q) = \frac{2}{\varphi(-q)} \sum_{r \geq 0} \frac{q^{r(r+1)/2}}{1 + q^r} \alpha_r(1, q) \quad \text{(SBL)}
\]
In the 1940’s, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.
In the 1940’s, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities. Freeman Dyson contributed a number of RR type identities to Bailey’s papers.
In the 1940’s, Bailey found a number of examples of Bailey pairs, and used them to generate RR type identities.

Freeman Dyson contributed a number of RR type identities to Bailey’s papers.

Lucy Slater found many Bailey pairs, and used them to generate a list of 130 RR type identities.
Letting

$$[d \mid n] = \begin{cases} 1 & \text{if } d \mid n \\ 0 & \text{if } d \nmid n \end{cases},$$

we define

$$\alpha_n^{(d,e,k)}(a, q) := \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1 - a^{1/e})(q^{d/e}; q^{d/e})_{n/d}} \times \frac{(1 - a^{1/e} q^{2n/e})(a^{1/e}; q^{d/e})_{n/d}[d \mid n]}{[d \mid n]},$$
Letting

\[
[d \mid n] = \begin{cases}
1 & \text{if } d \mid n \\
0 & \text{if } d \nmid n
\end{cases},
\]

we define

\[
\alpha_n^{(d,e,k)}(a, q) := \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1 - a^{1/e})(q^{d/e}; q^{d/e})_{n/d}} \times (1 - a^{1/e} q^{2n/e}) (a^{1/e}; q^{d/e})_{n/d} [d \mid n],
\]

\[
\tilde{\alpha}_n^{(d,e,k)}(a, q) := q^{n(d-n)/2de} a^{-n/de} \frac{(-a^{1/e}; q^{d/e})_{n/d}}{(-q^{d/e}; q^{d/e})_{n/d}} \alpha_n^{(d,e,k)}(a, q),
\]
General Bailey pairs

Letting

\[[d \mid n] = \begin{cases}
1 & \text{if } d \mid n \\
0 & \text{if } d \nmid n
\end{cases} , \]

we define

\[
\alpha_n^{(d,e,k)}(a, q) := \frac{(-1)^{n/d} a^{(k/d-1)n/e} q^{(k/d-1+1/2d)n^2/e-n/2e}}{(1 - a^{1/e})(q^{d/e}; q^{d/e})_{n/d}} \times (1 - a^{1/e} q^{2n/e})(a^{1/e}; q^{d/e})_{n/d} [d \mid n],
\]

\[
\tilde{\alpha}_n^{(d,e,k)}(a, q) := q^{n(d-n)/2de} a^{-n/d e} \frac{(-a^{1/e}; q^{d/e})_{n/d}}{(-q^{d/e}; q^{d/e})_{n/d}} \alpha_n^{(d,e,k)}(a, q),
\]

\[
\tilde{\alpha}_n^{(d,e,k)}(a, q) := (-1)^{n/d} q^{n^2/2de} \frac{(q^{d/2e}; q^{d/e})_{n/d}}{(a^{1/e} q^{d/2e}; q^{d/e})_{n/d}} \alpha_n^{(d,e,k)}(a, q).
\]
For any positive integer triples (d, e, k), upon inserting any of these α’s into any of the limiting cases of Bailey’s lemma with $a = 1$, the resulting series is summable via Jacobi’s triple product identity.
For any positive integer triples \((d, e, k)\), upon inserting any of these \(\alpha\)'s into any of the limiting cases of Bailey’s lemma with \(a = 1\), the resulting series is summable via Jacobi’s triple product identity.

For certain \((d, e, k)\), the resulting expression for \(\beta\) is a very well-poised \(6\phi_5\), summable by a theorem of F. H. Jackson.
For any positive integer triples \((d, e, k)\), upon inserting any of these \(\alpha\)'s into any of the limiting cases of Bailey’s lemma with \(a = 1\), the resulting series is summable via Jacobi’s triple product identity.

For certain \((d, e, k)\), the resulting expression for \(\beta\) is a very well-poised \(6\phi_5\), summable by a theorem of F. H. Jackson.

Using only this, and an associated families of \(q\)-difference equations, one can recover the majority of Slater’s list, as well as other identities.
The Bailey pair that arises from

\[
\left(\alpha_n^{(1,1,2)}(a, q), \beta_n^{(1,1,2)}(a, q) \right)
= \left(\frac{(-1)^n a^n q^{n(3n-1)/2} (1 - aq^{2n}) (a)_n}{(1 - a)(q)_n}, \frac{1}{(q)_n} \right)
\]

yields
The Bailey pair that arises from

\[
\left(\alpha_n^{(1,1,2)}(a, q), \beta_n^{(1,1,2)}(a, q) \right)
= \left(\frac{(-1)^n a^n q^{n(3n-1)/2}(1 - a q^{2n})(a)_n}{(1 - a)(q)_n}, \frac{1}{(q)_n} \right)
\]

yields

\[
\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty} \quad \text{upon insertion into (PBL),}
\]
The Bailey pair that arises from

\[
\left(\alpha_{n}^{(1,1,2)}(a, q), \beta_{n}^{(1,1,2)}(a, q) \right)
\]

\[
= \left((-1)^n a^n q^{n(3n-1)/2} \frac{(1 - aq^{2n})(a)_n}{(1 - a)(q)_n}, \frac{1}{(q)_n} \right)
\]

yields

- \[
\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty} \quad \text{upon insertion into (PBL),}
\]
- \[
\sum_{n \geq 0} \frac{q^{n(n+1)}(-1)_n}{(q)_n} = \frac{\varphi(-q^2)}{\varphi(-q)} \quad \text{upon insertion into (SBL), and}
\]
The Bailey pair that arises from

\[
\left(\alpha_n^{(1,1,2)}(a, q), \beta_n^{(1,1,2)}(a, q) \right)
= \left(\frac{(-1)^n a^n q^{n(3n-1)/2} (1 - aq^{2n})(a)_n}{(1 - a)(q)_n}, \frac{1}{(q)_n} \right)
\]

yields

- \[\sum_{n \geq 0} \frac{q^{n^2}}{(q)_n} = \frac{f(-q^2, -q^3)}{(q)_\infty} \] upon insertion into (PBL),
- \[\sum_{n \geq 0} \frac{q^{n(n+1)}(-1)_n}{(q)_n} = \frac{\varphi(-q^2)}{\varphi(-q)} \] upon insertion into (SBL), and
- \[\sum_{n \geq 0} \frac{q^{n^2}(-q;q^2)_n}{(q^2;q^2)_n} = \frac{f(-q^3, -q^5)}{\psi(-q)} \] upon insertion into (HBL).
Ramanujan’s pre-discovery of the Göllnitz–Gordon identities

In Slater, we find

$$
\sum_{n \geq 0} \frac{q^{n^2}(-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q^3, -q^4)}{\psi(-q)},
$$ \hspace{1cm} (S. 36)

$$
\sum_{n \geq 0} \frac{q^{n(n+2)}(-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q, -q^7)}{\psi(-q)}.
$$ \hspace{1cm} (S. 34)

Replace q by $-q$ to get the analytic Göllnitz–Gordon identities.
Ramanujan’s pre-discovery of the Göllnitz–Gordon identities

In Slater, we find
\[\sum_{n \geq 0} \frac{q^n (-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q^3, -q^4)}{\psi(-q)}, \quad (S. 36)\]
\[\sum_{n \geq 0} \frac{q^{n(n+2)} (-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q, -q^7)}{\psi(-q)}. \quad (S. 34)\]

In the lost notebook, we find
\[\sum_{n \geq 0} (-1)^n q^{n^2} (q; q^2)_n = \frac{\psi(q^4)}{f(q, q^7)}, \quad (RLN II: Ent 1.7.11)\]
\[\sum_{n \geq 0} (-1)^n q^{n(n+2)} (q; q^2)_n = \frac{\psi(q^4)}{f(q^3, q^5)}. \quad (RLN II: Ent 1.7.12)\]
Ramanujan’s pre-discovery of the Göllnitz–Gordon identities

In Slater, we find

\[
\sum_{n \geq 0} \frac{q^{n^2}(-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q^3, -q^4)}{\psi(-q)}, \quad (S. 36)
\]

\[
\sum_{n \geq 0} \frac{q^{n(n+2)}(-q; q^2)_n}{(q^2; q^2)_n} = \frac{f(-q, -q^7)}{\psi(-q)}. \quad (S. 34)
\]

In the lost notebook, we find

\[
\sum_{n \geq 0} \frac{(-1)^n q^{n^2} (q; q^2)_n}{(q^2; q^2)_n} = \frac{\psi(q^4)}{f(q, q^7)}, \quad (RLN \ II: \ Ent \ 1.7.11)
\]

\[
\sum_{n \geq 0} \frac{(-1)^n q^{n(n+2)} (q; q^2)_n}{(q^2; q^2)_n} = \frac{\psi(q^4)}{f(q^3, q^5)}. \quad (RLN \ II: \ Ent \ 1.7.12)
\]

Replace \(q \) by \(-q \) to get the analytic Göllnitz–Gordon identities.
A family of mod 24 identities

\[\sum_{n \geq 0} q^{n(n+2)} (-q; q^2)_n (-1; q^6)_n = \frac{f(-q, -q^{11})f(-q^{10}, -q^{14})}{\psi(-q)(q^{24}; q^{24})_\infty} \]
(M.-S.)

\[\sum_{n=0}^{\infty} q^{n^2} (-q^3; q^6)_n = \frac{f(-q^2, -q^{10})f(-q^8, -q^{16})}{\psi(-q)(q^{24}; q^{24})_\infty} \]
(RLN II: Ent 5.3.9)

\[\sum_{n \geq 0} q^{n^2} (-q; q^2)_n (-1; q^6)_n = \frac{f(-q^3, -q^9)f(-q^6, -q^{18})}{\psi(-q)(q^{24}; q^{24})_\infty} \]
(M.-S.)

\[\sum_{n \geq 0} q^n(-q^3; q^6)_n \frac{(q^2; q^2)_{2n}(1 - q^{2n+1})}{(q^2; q^2)_{2n}(1 - q^{2n+1})} = \frac{f(-q^4, -q^8)f(-q^4, -q^{20})}{\psi(-q)(q^{24}; q^{24})_\infty} \]
(M.-S.)

\[\sum_{n \geq 0} q^n(-q; q^2)_{n+1} (-q^6; q^6)_n = \frac{f(-q^5, -q^7)f(-q^2, -q^{22})}{\psi(-q)(q^{24}; q^{24})_\infty} \]
(M.-S.)
Combinatorial Rogers–Ramanujan

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.
A partition λ of n is a tuple $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of weakly decreasing positive integers (called the parts of λ) that sum to n.
Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A partition λ of n is a tuple $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of weakly decreasing positive integers (called the parts of λ) that sum to n. The seven partitions of 5 are

$$(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).$$
Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A partition λ of n is a tuple $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of weakly decreasing positive integers (called the parts of λ) that sum to n. The seven partitions of 5 are

$$(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).$$

The number of partitions of n into parts that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 1 \pmod{5}$.
Combinatorial Rogers–Ramanujan

Rogers, Ramanujan, Bailey, and Slater did not consider the combinatorial aspect of their work.

A *partition* λ of n is a tuple $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of weakly decreasing positive integers (called the *parts* of λ) that sum to n. The seven partitions of 5 are

$$(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).$$

The number of partitions of n into parts that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 1 \pmod{5}$.

The number of partitions of n into parts greater than 1 that mutually differ by at least 2 equals the number of partitions of n into parts congruent to $\pm 2 \pmod{5}$.
Let k be a positive integer and $1 \leq i \leq k$.
Let k be a positive integer and $1 \leq i \leq k$. Let $A_{k,i}(n)$ denote the number of partitions of n into parts \(\not\equiv 0, \pm i \pmod{2k + 1} \).
Let k be a positive integer and $1 \leq i \leq k$. Let $A_{k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm i \pmod{2k + 1}$. Let $B_{k,i}(n)$ denote the number of partitions λ of n where

- at most $i - 1$ of the parts of λ equal 1,
- $\lambda_j - \lambda_{j+k-1} \geq 2$ for $j = 1, 2, \ldots, l(\lambda) + 1 - k$.

Note: The case $k = 2$ gives the standard combinatorial interpretation of the two RR identities.
Let k be a positive integer and $1 \leq i \leq k$. Let $A_{k,i}(n)$ denote the number of partitions of n into parts $\not\equiv 0, \pm i \pmod{2k+1}$. Let $B_{k,i}(n)$ denote the number of partitions λ of n where
- at most $i - 1$ of the parts of λ equal 1,
- $\lambda_j - \lambda_{j+k-1} \geq 2$ for $j = 1, 2, \ldots, l(\lambda) + 1 - k$.
Then $A_{k,i}(n) = B_{k,i}(n)$ for all n.

Note: The case $k = 2$ gives the standard combinatorial interpretation of the two RR identities.
Let k be a positive integer and $1 \leq i \leq k$. Let $A_{k,i}(n)$ denote the number of partitions of n into parts \(\not\equiv 0, \pm i \pmod{2k+1} \).

Let $B_{k,i}(n)$ denote the number of partitions λ of n where

- at most $i - 1$ of the parts of λ equal 1,
- $\lambda_j - \lambda_{j+k-1} \geq 2$ for $j = 1, 2, \ldots, l(\lambda) + 1 - k$.

Then $A_{k,i}(n) = B_{k,i}(n)$ for all n.

Note: The case $k = 2$ gives the standard combinatorial interpretation of the two RR identities.
G. Andrews’ analytic counterpart to Gordon’s theorem

\[
\sum_{n_{k-1} \geq n_{k-2} \geq \cdots \geq n_1 \geq 0} \frac{q^{n_1^2 + n_2^2 + \cdots + n_{k-1}^2 + n_i + n_{i+1} + \cdots + n_{k-1}}}{(q)_{n_1} (q)_{n_2-n_1} (q)_{n_3-n_2} \cdots (q)_{n_{k-1}-n_{k-2}}} = f(-q^i, -q^{2k+1-i}) \frac{1}{(q)_{\infty}}.
\]
In the 1980’s J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_1^{(1)}$ are given by the The Andrews–Gordon identity.
In the 1980’s J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_1^{(1)}$ are given by the The Andrews–Gordon identity.

The two Rogers–Ramanujan identities occur at level 3.
In the 1980’s J. Lepowsky and R. Wilson showed that the principally specialized characters of standard modules for the odd levels of $A_{1}^{(1)}$ are given by the The Andrews–Gordon identity.

The two Rogers–Ramanujan identities occur at level 3.

The even levels of $A_{1}^{(1)}$ correspond to D. Bressoud’s even modulus analog of Andrews–Gordon.
The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Capparelli’s identities (1988)
Capparelli’s identities (1988)

The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_2^{(2)}$, S. Capparelli discovered:
The Rogers–Ramanujan identities also occur at level 2 of $A_2^{(2)}$.

Performing an analogous analysis of the level 3 modules of $A_2^{(2)}$, S. Capparelli discovered:

The number of partitions of n into parts $\equiv \pm 2, \pm 3 \pmod{12}$ equals the number of partitions $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of n where

- $\lambda_i - \lambda_{i+1} \geq 2$,
- $\lambda_i - \lambda_{i+1} = 2 \implies \lambda_i \equiv 1 \pmod{3}$,
- $\lambda_i - \lambda_{i+1} = 3 \implies \lambda_i \equiv 0 \pmod{3}$
In an analogous study of the level 4 modules of \(A_2^{(2)} \), D. Nandi conjectured three partition identities, one of which is:

The number of partitions of \(n \) into parts \(\equiv \pm 2, \pm 3, \pm 4 \pmod{14} \) equals the number of partitions \((\lambda_1, \lambda_2, \ldots, \lambda_l) \) of \(n \) where \(\lambda_i - \lambda_i + 1 \geq 2 \lambda_i - \lambda_i + 2 \geq 3 \lambda_i - \lambda_i + 2 = 3 \Rightarrow \lambda_i \neq \lambda_i + 1, \lambda_i - \lambda_i + 2 = 4\) and \(2 \nmid \lambda_i = \Rightarrow \lambda_i \neq \lambda_i + 2 \).

Consider the first differences \(\Delta \lambda := (\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \ldots, \lambda_l - 1 - \lambda_l) \). None of the following subwords are permitted in \(\Delta \lambda \):

\((3,3,0), (3,2,3,0), (3,2,2,3,0), \ldots, (3,2,2,2,2,2,\ldots,2,3,0)\).
Nandi’s identities (2014)

In an analogous study of the level 4 modules of $A^{(2)}_2$, D. Nandi conjectured three partition identities, one of which is:

The number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4 \pmod{14}$ equals the number of partitions $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ of n where

- $\lambda_i - \lambda_{i+1} \geq 2$
- $\lambda_i - \lambda_{i+2} \geq 3$
- $\lambda_i - \lambda_{i+2} = 3 \implies \lambda_i \neq \lambda_{i+1}$
- $\lambda_i - \lambda_{i+2} = 3$ and $2 \nmid \lambda_i \implies \lambda_{i+1} \neq \lambda_{i+2}$
- $\lambda_i - \lambda_{i+2} = 4$ and $2 \nmid \lambda_i \implies \lambda_i \neq \lambda_{i+1}$

Consider the first differences

$\Delta \lambda := (\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \ldots, \lambda_{l-1} - \lambda_l)$. None of the following subwords are permitted in $\Delta \lambda$:

$(3, 3, 0), (3, 2, 3, 0), (3, 2, 2, 3, 0), \ldots, (3, 2, 2, 2, 2, \ldots, 2, 3, 0)$.

Drew Sills

Rogers–Ramanujan type identities
Related to level 3 standard modules of \(D_4^{(3)}\), Kandade and Russell conjectured several partition identities, including:
Related to level 3 standard modules of $D^{(3)}_4$, Kandade and Russell conjectured several partition identities, including:

The number of partitions of n into parts $\equiv \pm 1, \pm 3 \pmod{9}$ equals the number of partitions λ of n such that

- $\lambda_j - \lambda_{j+2} \geq 3$,
- $\lambda_j - \lambda_{j+1} \leq 1 \implies 3 \mid (\lambda_j + \lambda_{j+1})$.
“A framework of Rogers–Ramanujan identities and their arithmetic properties”, Duke Math. J., to appear. Griffin, Ono, and Warnaar find a framework which extends the RR identities to doubly infinite families of q series identities. For $a = 1$ or 2 and $m, n \geq 1$,

$$\sum_{\lambda_{1} < m} q^{a|\lambda|} P_{2\lambda}(1, q, q^2, \ldots; q^n) = \text{an infinite product modular function},$$

where $P_{\lambda}(x_1, x_2, \ldots; q)$ are Hall–Littlewood polynomials. These q-series are specialized characters of affine Kac–Moody algebras.
Thank you for listening!