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1 Introduction

The Rogers-Ramanujan identities, due to Rogers [1894], may be stated as
follows:

The Rogers-Ramanujan Identities If |q| < 1, then

∞∑
j=0

qj
2

(q; q)j
=

(q2, q3, q5; q5)∞
(q; q)∞

(1.1)

and
∞∑
j=0

qj(j+1)

(q; q)j
=

(q, q4, q5; q5)∞
(q; q)∞

, (1.2)

Email address: asills@math.rutgers.edu (Andrew V. Sills).
URL: http://www.math.rutgers.edu/~asills (Andrew V. Sills).

Preprint submitted to Elsevier Science 24 April 2003



where

(a; q)j =
j−1∏
m=0

(1− aqm),

(a; q)∞ = lim
j→∞

(a; q)j, and

(a1, a2, . . . , ar; q)∞ = (a1; q)∞(a2; q)∞ . . . (ar; q)∞.

There are many series-product identities which resemble the Rogers-Ramanujan
identities in form, and are thus called “identities of the Rogers-Ramanujan
type.” The seminal papers on Rogers-Ramanujan type identities include Rogers
[1894], Rogers [1917], Jackson [1928], Bailey [1947], Bailey [1949], and Slater
[1952].

As documented by Berkovich and McCoy [1998], Rogers-Ramanujan type iden-
tities are essential to the solution of various models in statistical mechanics.
In the language of the physicists, the left hand sides of (1.1) and (1.2) are
called “fermionic” representations, and the right-hand sides are easily seen to
be equivalent to what are called “bosonic” representations. For convenience,
I will adopt this terminology, and use it throughout this paper.

Andrews [1981] showed that finitizations of (i.e. polynomial identities whose
limiting cases are) Rogers-Ramanujan type identities are useful for determin-
ing relationships between various sets of identities via q → 1/q duality.

The RRtools package assists the user in finding finitizations of Rogers-Ramanujan
type identities and duality relationships. In fact, with the use of this package,
in [Sills, 2003], I was able to finitize all the identities in the list of Slater [1952].

There are at least three known categories of methods for finitizing Rogers-
Ramanujan type identities:

(1) Bailey’s Lemma. See Bailey [1949], Andrews [1986, Theorem 3.3], and
Bressoud [1981].

(2) Finitizations motivated by the models of statistical mechanics. There are
numerous papers in this area. Some representatives are Andrews [1981],
Andrews et al. [1984], Berkovich and McCoy [1996], Berkovich and McCoy
[1997], Berkovich et al. [1996], Berkovich et al. [1998a], Berkovich et al.
[1998b], Schilling and Warnaar [1998], Warnaar [2001], Warnaar [2002].

(3) Finitization via q-difference equations. See Andrews [1986, Chapter 9],
Santos [1991], Santos [2002], Santos and Sills [2002], Sills [2002], Sills
[2003].

In some cases, two or more of the methods will produce identical finitizations
of a given Rogers-Ramanujan type identity. However, in general, distinct fini-
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tizations will result. The RRtools package only deals with the method of
q-difference equations.

After the mathematical preliminaries are reviewed in §2, I shall discuss finiti-
zation via q-difference equations in detail in §3.

A user’s guide to the RRtools package is presented in §4, followed in §5 by a
user’s guide to the companion package recpf, which is a useful aid for proving
identities conjectured with RRtools.

2 Mathematical Preliminaries

2.1 q-Binomial coëfficients

The Gaussian polynomial
[
A
B

]
q

may be defined as

[
A

B

]
q

:=


(q;q)A

(q;q)B(q;q)A−B
if 0 5 B 5 A

0, otherwise.
(2.1)

The following properties of Gaussian polynomials are well-known [Andrews,
1976, pp. 35 ff.]. For 0 5 B 5 A and A > 0, we have

deg

[A
B

]
q

 = B(A−B) (2.2)

lim
q→1

[
A

B

]
q

=

(
A

B

)
(2.3)

(Because of (2.3), Gaussian polynomials are also called q-binomial coëfficients.)[
A

B

]
q

=

[
A

A−B

]
q

(2.4)[
A

B

]
q

=

[
A− 1

B

]
q

+ qA−B
[
A− 1

B − 1

]
q

(2.5)[
A

B

]
q

=

[
A− 1

B − 1

]
q

+ qB
[
A− 1

B

]
q

(2.6)[
A

B

]
1/q

= qB(B−A)

[
A

B

]
q

(2.7)

lim
n→∞

[
2n+ a

n+ b

]
q

=
1

(q; q)∞
. (2.8)
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q-Binomial Theorem. [Andrews et al., 1999, p. 488, Thm. 10.2.1] or [An-
drews, 1976, p. 17, Thm. 2.1]. If |t| < 1 and |q| < 1,

∞∑
k=0

(a; q)k
(q; q)k

tk =
(at; q)∞
(t; q)∞

. (2.9)

We will make use of the following corollaries of (2.9):

j∑
k=0

[
j

k

]
q

(−1)kq(
k
2)tk = (t; q)j (2.10)

∞∑
k=0

[
j + k − 1

k

]
q

tk =
1

(t; q)j
(2.11)

∞∑
k=0

qrk
2+sk

(q2r; q2r)k
= (−qr+s; q2r)∞ (2.12)

2.2 q-Trinomial coëfficients

2.2.1 Definitions

By expanding the Laurent polynomial (1+x+x−1)L and gathering like terms,
we find

(1 + x+ x−1)L =
L∑

j=−L

(
L

j

)
2

xj (2.13)

where

(
L

A

)
2

=
∑
r=0

L!

r!(r + A)!(L− 2r − A)!
(2.14)

=
L∑
r=0

(−1)r
(
L

r

)(
2L− 2r

L− A− r

)
. (2.15)

The
(
L
A

)
2

are called trinomial coëfficients.

The two representations (2.14) and (2.15) of
(
L
A

)
2

give rise to different q-
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analogs [Andrews and Baxter, 1987, p. 299, eqns. (2.7)–(2.12)]: 1

(
L,B; q

A

)
2

:=
∑
r=0

qr(r+B)(q; q)L
(q; q)r(q; q)r+A(q; q)L−2r−A

=
L∑
r=0

qr(r+B)

[
L

r

]
q

[
L− r
r + A

]
q

(2.16)

T0(L,A; q) :=
L∑
r=0

(−1)r
[
L

r

]
q2

[
2L− 2r

L− A− r

]
q

(2.17)

T1(L,A; q) :=
L∑
r=0

(−q)r
[
L

r

]
q2

[
2L− 2r

L− A− r

]
q

(2.18)

τ0(L,A; q) :=
L∑
r=0

(−1)rqLr−(r
2)
[
L

r

]
q

[
2L− 2r

L− A− r

]
q

(2.19)

t0(L,A; q) :=
L∑
r=0

(−1)rqr
2

[
L

r

]
q2

[
2L− 2r

L− A− r

]
q

(2.20)

t1(L,A; q) :=
L∑
r=0

(−1)jqr(r−1)

[
L

r

]
q2

[
2L− 2r

L− A− r

]
q

(2.21)

It is convenient to follow Andrews [1990] and define

U(L,A; q) := T0(L,A; q) + T0(L,A+ 1; q). (2.22)

Further, I will follow Sills [2003] and define

V(L,A; q) := T1(L− 1, A; q) + qL−AT0(L− 1, A− 1; q). (2.23)

2.2.2 Recurrences

The following Pascal triangle type recurrence may be deduced from (2.13):

(
L

A

)
2

=

(
L− 1

A− 1

)
2

+

(
L− 1

A

)
2

+

(
L− 1

A+ 1

)
2

. (2.24)

We will require the following q-analogs of (2.24), which are due to Andrews
and Baxter [1987, pp. 300-1, eqns. (2.16), (2.19), (2.25) (2.26), (2.28), and

1 Note: Occasionally in the literature (e.g. [Andrews and Berkovich, 1998] or [War-
naar, 1999]), superficially different definitions of the T0 and T1 functions are used.
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(2.29)]: For L = 1,

T1(L,A; q) = T1(L− 1, A; q) + qL+AT0(L− 1, A+ 1; q) + qL−AT0(L− 1, A− 1; q)
(2.25)

T0(L,A; q) = T0(L− 1, A− 1; q) + qL+AT1(L− 1, A; q)

+q2L+2AT0(L− 1, A+ 1; q) (2.26)(
L,A− 1; q

A

)
2

= qL−1

(
L− 1, A− 1; q

A

)
2

+ qA
(
L− 1, A+ 1; q

A+ 1

)
2

+

(
L− 1, A− 1; q

A− 1

)
2

(2.27)(
L,A; q

A

)
2

= qL−A
(
L− 1, A− 1; q

A− 1

)
2

+ qL−A−1

(
L− 1, A− 1; q

A

)
2

+

(
L− 1, A+ 1; q

A+ 1

)
2

(2.28)(
L,B; q

A

)
2

=

(
L− 1, B; q

A

)
2

+ qL−A−1+B

(
L− 1, B; q

A+ 1

)
2

+qL−A
(
L− 1, B − 1; q

A− 1

)
2

(2.29)(
L,B; q

A

)
2

=

(
L− 1, B; q

A

)
2

+ qL−A
(
L− 1, B − 2; q

A− 1

)
2

+qL+B

(
L− 1, B + 1; q

A+ 1

)
2

(2.30)

The following identities of Andrews and Baxter [1987, p. 301, eqns. (2.20) and
(2.27 corrected)], which reduce to “0 = 0” in the q = 1 case are also useful:

T1(L,A; q)− qL−AT0(L,A; q)− T1(L,A+ 1; q) + qL+A+1T0(L,A+ 1; q) = 0,
(2.31)(

L,A; q

A

)
2

+ qL
(
L,A; q

A+ 1

)
2

−
(
L,A+ 1; q

A+ 1

)
2

− qL−A
(
L,A− 1; q

A

)
2

= 0.

(2.32)

Observe that (2.31) is equivalent to

V(L+ 1, A+ 1; q) = V(L+ 1,−A; q). (2.33)

The following recurrences appear in Andrews [1990, p. 661, Lemmas 4.1 and
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4.2]: For L = 1,

U(L,A; q) = (1 + q2L−1)U(L− 1, A; q) + qL−AT1(L− 1, A− 1; q)

+qL+A+1T1(L− 1, A+ 2; q). (2.34)

U(L,A; q) = (1 + q + q2L−1)U(L− 1, A; q)− qU(L− 2, A; q)

+q2L−2AT0(L− 2, A− 2; q)

+q2L+2A+2T0(L− 2, A+ 3; q). (2.35)

An analogous recurrence for the “V” function [Sills, 2003, p. 7, eqn. (1.36)] is

V(L,A; q) = (1 + q2L−2)V(L− 1, A; q) + qL−AT0(L− 2, A− 2; q)

+qL+A−1T0(L− 2, A+ 1; q). (2.36)

2.2.3 Identities

From (2.13), it is easy to deduce the symmetry relationship(
L

A

)
2

=

(
L

−A

)
2

. (2.37)

Two q-analogs of (2.37) are

T0(L,A; q) = T0(L,−A; q) (2.38)

and
T1(L,A; q) = T1(L,−A; q). (2.39)

The analogous relationship for the
(
L,B;q
A

)
2

[Andrews and Baxter, 1987, p. 299,

eqn. (2.15)] is (
L,B; q

−A

)
2

= qA(A+B)

(
L,B + 2A; q

A

)
2

. (2.40)

Other fundamental relations among the various q-trinomial coëfficients include
the following (see Andrews and Baxter [1987, pp. 305–306]):(

L,A; q

A

)
2

= τ0(L,A; q) (2.41)

T0(L,A; q−1) = qA
2−L2

t0(L,A; q) = qA
2−L2

τ0(L,A; q2) (2.42)

T1(L,A; q−1) = qA
2−L2

t1(L,A; q) (2.43)

τ0(L,A; q2) =

(
L,A; q2

A

)
2

= t0(L,A; q) (2.44)(
L,A− 1; q2

A

)
2

= qA−Lt1(L,A; q) (2.45)
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2.2.4 Asymptotics

The following asymptotic results for q-trinomial coëfficients are proved in, or
are direct consequences of, Andrews and Baxter [1987, pp. 309–312]:

lim
L→∞

(
L,A; q

A

)
2

= lim
L→∞

τ0(L,A; q) =
1

(q; q)∞
(2.46)

lim
L→∞

(
L,A− 1; q

A

)
2

=
1 + qA

(q; q)∞
(2.47)

lim
L→∞

L−A even

T0(L,A; q) =
(−q; q2)∞ + (q, q2)∞

2(q2; q2)∞
(2.48)

lim
L→∞

L−A odd

T0(L,A; q) =
(−q; q2)∞ − (q; q2)∞

2(q2; q2)∞
(2.49)

lim
L→∞

T1(L,A; q) =
(−q2; q2)∞
(q2; q2)∞

(2.50)

lim
L→∞

V(L,A; q) =
(−q2; q2)∞
(q2; q2)∞

(2.51)

lim
L→∞

t0(L,A; q) =
1

(q2; q2)∞
(2.52)

lim
L→∞

q−Lt1(L,A; q) =
q−A + qA

(q2; q2)∞
(2.53)

lim
L→∞

U(L,A; q) =
(−q; q2)∞
(q2; q2)∞

(2.54)

2.3 Miscellaneous Results

The following well known identity is essential:

Jacobi’s Triple Product Identity. [Andrews, 1976, p. 21, Theorem 2.8]
or [Ismail, 1977]. For z 6= 0 and |q| < 1,

∞∑
j=−∞

zjqj
2

=
∞∏
j=1

(1 + zq2j−1)(1 + z−1q2j−1)(1− q2j) (2.55)

= (−zq,−z−1q, q2; q2)∞

The following two results can be used to simplify certain sums of two instances
of Jacobi’s triple product identity:
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Quintuple Product Identity. [Watson, 1929]

∞∏
j=1

(1 + z−1qj)(1 + zqj−1)(1− z−2q2j−1)(1− z2q2j−1)(1− qj) (2.56)

=
∞∏
j=1

(1− z3q3j−2)(1− z−3q3j−1)(1− q3j) + z
∞∏
j=1

(1− z−3q3j−2)(1− z3q3j−1)(1− q3j)

or, in abbreviated notation,

(z3q, z−3q2, q3; q3)∞ + z(z−3q, z3q2, q3; q3)∞ = (−z−1q,−z, q; q)∞(z−2q, z2q; q2)∞.

Next, an identity of Bailey [1951, p. 220, eqn. (4.1)]:

∞∏
j=1

(1 + z2q4j−3)(1 + z−2q4j−1)(1− q4j) + z
∞∏
j=1

(1 + z2q4j−1)(1 + z−2q4j−3)(1− q4j)

(2.57)

=
∞∏
j=1

(1 + zqj−1)(1 + z−1qj)(1− qj)

or, in abbreviated notation,

(−z2q,−z−2q3, q4; q4)∞ + z(−z2q3,−z−2q, q4; q4)∞ = (−z,−z−1q, q; q)∞.

We will also require the following result:

Abel’s Lemma. [Whittaker and Watson, 1958, p. 57] or [Andrews, 1971, p.
190]. If limn→∞ an = L, then

lim
t→1−

(1− t)
∞∑
n=0

ant
n = L. (2.58)

3 Finitization and Duality for Rogers-Ramanujan Type Identities

3.1 Finitization by the Method of q-Difference Equations

We now turn our attention to a method for discovering finite analogs of Rogers-
Ramanujan type identities, i.e. polynomial identities which converge to a given
identity of the Rogers-Ramanujan type. As there may be many distinct poly-
nomial identities which converge to a given series-product identity, there may
be many different ways to finitize a given series-product identity. For a dis-
cussion of other methods which in general lead to finitizations different from
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those we will discuss here, see the discussion in §0 of Sills [2003]. Here I will
focus on one particular method of finitization which will be referred to as the
“method of q-difference equations.” I have automated much of the process in
the RRtools package.

The method of q-difference equations was first discussed by Andrews [1986,
sec. 9.2, p. 88]. We begin with an identity of the Rogers-Ramanujan type

φ(q) = Π(q)

where φ(q) is the series and Π(q) is an infinite product or sum of several infinite
products. We consider a two variable generalization f(q, t) which satisfies the
following three conditions:

Conditions 1

(1) f(q, t) =
∑∞
n=0 Pn(q)tn where the Pn(q) are polynomials,

(2) φ(q) = limt→1−(1− t)f(q, t) = limn→∞ Pn(q) = Π(q), and
(3) f(q, t) satisfies a nonhomogeneous q-difference equation of the form

f(q, t) = R1(q, t) +R2(q, t)f(q, tqk)

where Ri(q, t) are rational functions of q and t for i = 1, 2 and k ∈ Z+.

Sills [2003, p. 15, Theorem 2.2] has shown that if φ(q) is written in the form

∞∑
j=0

(−1)ajqbj
2+cj ∏r

i=1(diq
ei ; qki)j+li

(qm; qm)j
∏s
i=1(δiq

εi ; qκi)j+λi

,

where a = 0 or 1; b,m ∈ Z+; c ∈ Z;
di = ±1; ei, ki ∈ Z+, li ∈ Z for 1 5 i 5 r;
δi = ±1; εi, κi ∈ Z+; λi ∈ Z for 1 5 i 5 s; then

f(q, t) =
∞∑
j=0

(−1)ajt2bj/gqbj
2+cj ∏r

i=1(dit
ki/gqei ; qki)j+li

(t; qm)j+1
∏s
i=1(δit

κi/gqεi ; qκi)j+λi

,

where g = gcd(m, k1, k2, . . . , kr, κ1, κ2, . . . , κs) is a two variable generalization
of φ(q) which satisfies Conditions 1.

The nonhomogeneous q-difference equation can be used to find a recurrence
which the Pn(q) satisfy, and thus a list of P0(q), P1(q), . . . , PN(q) can be pro-
duced for any N .

The fermionic representation of the finitization is obtained by expanding the
rising q-factorials which appear in f(q, t) using (2.10) and (2.11), changing
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variables so that the resulting power of t is n, so that Pn(q) can be seen as
the coëfficient of tn.

Obtaining the bosonic representation for Pn(q) is more difficult, and requires
conjecturing the correct form. As we shall see, the RRtools Maple package
contains a number of tools to aid the user in making an appropriate conjecture.

After the proposed polynomial identity is conjectured, it can be proved show-
ing that the bosonic representation satisfies the same recurrence and initial
conditions as the fermionic representation.

3.2 An Example Done “by Hand”

To serve as a prototypical example, we will examine the finitization process
on an identity from the list of Slater [1952, p. 153, eqn. (7)], an identity due
to Euler:

∞∑
j=0

qj
2+j

(q2; q2)j
=
∞∏
j=1

(1 + q2j) (3.1)

The required two variable generalization of the LHS of (3.1) is

f(q, t) =
∞∑
j=0

tjqj
2+j

(1− t)(tq2; q2)j
.

Next, we produce the nonhomogeneous q-difference equation.

f(q, t) =
∞∑
j=0

tjqj
2+j

(t; q2)j+1

=
1

1− t
+
∞∑
j=1

tjqj
2+j

(t; q2)j+1

=
1

1− t
+
∞∑
j=0

tj+1q(j+1)2+(j+1)

(t; q2)j+2

=
1

1− t
+

tq2

1− t

∞∑
j=0

(tq2)jqj
2+j

(tq2; q2)j+1

=
1

1− t
+

tq2

1− t
f(q, tq2)

Thus, a non-homogeneous q-difference equation satisfied by f(q, t) is

f(q, t) =
1

1− t
+

tq2

1− t
f(q, tq2). (3.2)
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Next, we find the sequence of polynomials {Pn(q)}∞n=0 as follows:

Clearing denominators in (3.2) gives

(1− t)f(q, t) = 1 + tq2f(q, tq2),

which is equivalent to

f(q, t) = 1 + tf(q, t) + tq2f(q, tq2).

Thus,

∞∑
n=0

Pn(q)tn = 1 + t
∞∑
n=0

Pn(q)tn + tq2
∞∑
n=0

Pn(q)(tq2)n

= 1 +
∞∑
n=0

Pn(q)tn+1 +
∞∑
n=0

Pn(q)tn+1q2n+2

= 1 +
∞∑
n=1

Pn−1(q)t
n +

∞∑
n=1

q2nPn−1(q)t
n

= 1 +
∞∑
n=1

(1 + q2n)Pn−1(q)t
n.

We can read off from the last line that the polynomial sequence {Pn(q)}∞n=0

satisfies the following recurrence relation:

P0(q) = 1 (3.3)

Pn(q) = (1 + q2n)Pn−1, if n = 1. (3.4)

Note that for this example, since a first order recurrence was obtained, Pn(q)
is expressible as a finite product, and thus in some sense, the problem is done.
However, the overwhelming majority of the identities from Slater’s list yield
finitizations whose minimimal recurrence order is greater than one, and thus
not expressible as a finite product. In such cases, we must work harder to find
a representation for Pn(q) which can be seen to converge in a direct fashion
to the RHS of the original identity. Thus we continue the demonstration:

Now that a recurrence for the Pn(q) is known, a finite list {Pn(q)}Nn=0 can be
produced:

P0(q) = 1

P1(q) = q2 + 1

P2(q) = q6 + q4 + q2 + 1

P3(q) = q12 + q10 + q8 + 2q6 + q4 + q2 + 1

P4(q) = q20 + q18 + q16 + 2q14 + 2q12 + 2q10 + 2q8 + 2q6 + q4 + q2 + 1
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Notice that the degree of Pn(q) appears to be n(n + 1). Being familiar with

Gaussian polynomials, we recall that the degree of
[
2n+1
n+1

]
q

is also n(n+ 1) (by

(2.2)), and wonder if this Gaussian polynomial might play a fundamental rôle
in the bosonic representation of Pn(q). Also, since

Π(q) =
(q, q3, q4; q4)∞

(q; q)∞

(an instance of Jacobi’s triple product identity multiplied by 1/(q; q)∞) and

lim
n→∞

[
2n+ 1

n+ 1

]
q

=
1

(q; q)∞
(by (2.8)),

we have further evidence in favor of the Gaussian polynomial
[
2n+1
n+1

]
q

playing

a central rôle. Using the method of successive approximations by Gaussian
polynomials discussed by Andrews and Baxter [1990], one can conjecture that,
at least for small n, it is true that

Pn(q) =

[
2n+ 1

n+ 1

]
q

−q
[
2n+ 1

n+ 2

]
q

−q3

[
2n+ 1

n+ 3

]
q

+q6

[
2n+ 1

n+ 4

]
q

+q10

[
2n+ 1

n+ 5

]
q

−. . . ,

which is a good start, but the bosonic representation must be a bilateral series.
Thus we employ (2.4) to rewrite the above as

Pn(q) =

[
2n+ 1

n+ 1

]
q

−q
[
2n+ 1

n− 1

]
q

−q3

[
2n+ 1

n+ 3

]
q

+q6

[
2n+ 1

n− 3

]
q

+q10

[
2n+ 1

n+ 5

]
q

−. . . ,

which is equivalent to

Pn(q) =
∞∑

j=−∞
(−1)jq2j2+j

[
2n+ 1

n+ 2j + 1

]
q

, (3.5)

which is in the desired (bosonic) form.

Obtaining the fermionic representation for Pn(q) simply requires expanding
the q-factorials by (2.10) or (2.11) as appropriate:

∞∑
n=0

Pn(q)tn = f(q, t)

=
∞∑
j=0

tjqj
2+j

(1− t)(tq2; q2)j

=
∞∑
j=0

tjqj
2+j

∞∑
k=0

[
j + k

k

]
q2

tk by (2.11)
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=
∞∑
j=0

∞∑
k=0

tj+kqj
2+j

[
j + k

j

]
q2

by (2.4)

=
∞∑
n=0

tn
∞∑
j=0

qj
2+j

[
n

j

]
q2

(by taking n = j + k)

By comparing coëfficients of tn in the extremes, we find

Pn(q) =
∞∑
j=0

qj
2+j

[
n

j

]
q2

. (3.6)

Combining (3.6) and (3.5), we obtain the conjectured polynomial identity

∞∑
j=0

qj
2+j

[
n

j

]
q2

=
∞∑

j=−∞
(−1)jq2j2+j

[
2n+ 1

n+ 2j + 1

]
q

. (3.7)

We now need to prove that identity (3.7) is valid.

Remark. Equation (3.7) may be proved in a completely automated fashion
by the q-Zeilberger algorithm. I include a proof by recurrence here as a sim-
ple example to serve as a prototype for the type of proofs assisted by the
recpf package, to be described in section 5. In fact, all the identities in §3 of
Sills [2003] are theoretically provable by the q-Zeilberger algorithm [Zeilberger,
1991] or its multisum generalization [Wilf and Zeilberger, 1992]. However, in
practice, the qZeil [Paule and Riese, 1997] and qMultiSum [Riese, 2003] Math-
ematica packages, which are truly state-of-the-art, nonetheless encounter run
time and complexity difficulties when attempting to deal with many of these
identities [Riese, 2002].

PROOF OF (3.7). The fermionic representation (i.e. lefthand side) of (3.7)
is known to satisfy the recurrence (3.4) and the initial condition (3.3) by the
way it was constructed. Thus, the proof of (3.7) will be complete upon showing
that the proposed bosonic representation (i.e. righthand side) of (3.7) satisfies
(3.4) and (3.3).

First, it is trivial to check that the n = 0 case of (3.7) holds; it reduces to
1 = 1.

Next, we want to show that the RHS of (3.7) satisfies (3.4), or equivalently
that it satisfies

Pn(q)− (1 + q2n)Pn−1(q) = 0. (3.8)
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So substitute the RHS of (3.7) for Pn(q) in the LHS of (3.8):

∞∑
j=−∞

(−1)jq2j2+j

[
2n+ 1

n+ 2j + 1

]
q

−
∞∑

j=−∞
(−1)jq2j2+j

[
2n− 1

n+ 2j

]
q

−
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

Next, apply (2.6) to the first term to obtain

=
∞∑

j=−∞
(−1)jq2j2+j

[
2n

n+ 2j

]
q

+
∞∑

j=−∞
(−1)jq2j2+3j+n+1

[
2n

n+ 2j + 1

]
q

−
∞∑

j=−∞
(−1)jq2j2+j

[
2n− 1

n+ 2j

]
q

−
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

Then apply (2.5) to the first term to obtain

=
∞∑

j=−∞
(−1)jq2j2+j

[
2n− 1

n+ 2j

]
q

+
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

+
∞∑

j=−∞
(−1)jq2j2+3j+n+1

[
2n

n+ 2j + 1

]
q

−
∞∑

j=−∞
(−1)jq2j2+j

[
2n− 1

n+ 2j

]
q

−
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

whereupon the first and fourth terms cancel leaving

=
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

+
∞∑

j=−∞
(−1)jq2j2+3j+n+1

[
2n

n+ 2j + 1

]
q

−
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

Next, we apply (2.5) to the second term to get

=
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

+
∞∑

j=−∞
(−1)jq2j2+3j+n+1

[
2n− 1

n+ 2j + 1

]
q

+
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

−
∞∑

j=−∞
(−1)jq2j2+j+2n

[
2n− 1

n+ 2j

]
q

and so the third and fourth terms cancel leaving

=
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

+
∞∑

j=−∞
(−1)jq2j2+3j+n+1

[
2n− 1

n+ 2j + 1

]
q
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By replacing j with j − 1 in the second term, we now have

=
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

+
∞∑

j=−∞
(−1)j−1q2(j−1)2+3(j−1)+n+1

[
2n− 1

n+ 2(j − 1) + 1

]
q

=
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

−
∞∑

j=−∞
(−1)jq2j2−j+n

[
2n− 1

n+ 2j − 1

]
q

= 0

and thus the recurrence (3.8) is satisfied by the RHS of (3.7) and the identity
(3.7) is proved. 2

To see that (3.7) is indeed a finitization of (3.1), we carry out the following
calculations:

lim
n→∞

∞∑
j=0

qj
2+j

[
n

j

]
q2

= lim
n→∞

∞∑
j=0

qj
2+j (q2; q2)n

(q2; q2)j(q2; q2)n−j

=
∞∑
j=0

qj
2+j

(q2; q2)j
,

and so the LHS of (3.7) converges to the LHS of (3.1).

lim
n→∞

∞∑
j=−∞

(−1)jq2j2+j

[
2n+ 1

n+ 2j + 1

]
q

=
1

(q; q)∞

∞∑
j=−∞

(−1)jq2j2+j (by (2.8))

=
1

(q; q)∞
· (q, q3, q4; q4)∞ (by Jacobi’s Triple Product Identity (2.55))

=
∞∏
j=1

(1 + q2j),

and so the RHS of (3.7) converges to the RHS of (3.1), and thus identity (3.1)
may be viewed as a corollary of identity (3.7).

3.3 Duality

Andrews [1981] demonstrated a type of duality relationship that exists among
a few sets of Rogers-Ramanujan type identities. The (reciprocal) dual of a
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polynomial
anq

n + an−1q
n−1 + an−2q

n−2 + · · ·+ a1q + a0

(where an 6= 0) is

a0q
n + a1q

n−1 + a2q
n−2 + · · ·+ an−1q + an.

Equivalently, the reciprocal of P (q) is

qdeg(P (q))P (q−1). (3.9)

If qdeg(P (q))P (q−1) = P (q), the associated identity is called self-dual. Let us
work through an example of calculating the dual of an identity: Consider, say,
identity 10 of Slater [1952], which is

∑
j=0

(−1; q)2jq
j2

(q2; q2)j(q2; q4)j
=
∏
j=1

(1 + q2j−1)(1 + qj) (3.10)

A finite form of (3.10) is

∑
i=0

∑
j=0

∑
k=0

qj
2+i2−i+k

[
j

i

]
q2

[
j + k − 1

k

]
q2

[
n− i− k

j

]
q2

=
∞∑

j=−∞
q2j2+j

[
T0(n, 2j; q) + T0(n− 1, 2j; q)

]
. (3.11)

(See [Sills, 2003, Identity 3.10].) Notice that when j = k = 0 in the LHS sum,[
−1
0

]
q2

must be interpreted as 1, even though (2.1) would indicate
[
−1
0

]
q2

= 0.

Such flexibility regarding initial conditions is often required when dealing with
Gaussian polynomials.

Remark. One referee pointed out that the LHS of (3.11) can be simplified to
a double sum using a special case of the Andrews-Askey formula [Gasper and
Rahman, 1990, p. 22, ex (1.8), b = q−2n, a = qj−n]. Thus we have

∑
k=0

qk
[
j + k − 1

k

]
q2

[
n− k
j

]
q2

=

[
n+ j

2j

]
q

.

This points to one of the inherant limitations of RRtools. Since the series
side of Identity 10 of Slater [1952] contains three rising q-factorials, RRtools
will automatically find a three-fold sum. For a number of identities in Sills
[2003], I noticed such a simplification and worked it out by hand. For others,
such as (3.11), I missed the simplification. For still others, a reduction from
a three-fold to a two-fold sum was possible, but not desirable, as it obscured
the fact that the limit as n→∞ was, in fact, the original series.
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An examination of the first few cases n = 0, 1, 2, etc., convinces one that the
degree of the polynomial is n2. Thus, by (3.11) and (3.9), the dual polynomials
of (3.11) can be represented by either of the two forms

∑
i=0

∑
j=0

∑
k=0

qn
2−(j2+i2−i+k)

[
j

i

]
1/q2

[
j + k − 1

k

]
1/q2

[
n− i− k

j

]
1/q2

=
∞∑

j=−∞
qn

2−(2j2+j)
[
T0(n, 2j; 1/q) + T0(n− 1, 2j; 1/q)

]
. (3.12)

Applying (2.42) and (2.41) on the righthand side and (2.7) on the left hand
side, we obtain

∑
h=0

∑
i=0

∑
k=0

qk+i+2i(h+i+k)+(h+k)2
[
n− i− h− k

i

]
q2

[
n− i− h− 1

k

]
q2

[
n− i− k

h

]
q2

=
∞∑

j=−∞
q2j2−j

(
n, 2j; q2

2j

)
2

+ q2j2−j+2n−1

(
n− 1, 2j; q2

2j

)
2

.

We can suppose that |q| < 1 and let n→∞ in the preceding equation to obtain
a Rogers-Ramanujan type identity. First, we consider the lefthand side:

lim
n→∞

∑
h,i,k=0

qk+i+2i(h+i+k)+(h+k)2
[
n− i− h− k

i

]
q2

[
n− i− h− 1

k

]
q2

[
n− i− k

h

]
q2

=lim
n→∞

∑
h,i,k=0

qk+i+2i(h+i+k)+(h+k)2(q2; q2)n−i−j−k(q
2; q2)n−i−h−1(q

2; q2)n−i−k
(q2; q2)i(q2; q2)n−2i−h−k(q2; q2)k(q2; q2)n−i−k−h−1(q2; q2)h(q2; q2)n−i−k−h

=
∞∑
h=0

∞∑
i=0

∞∑
k=0

qk+i+2i(h+i+k)+(h+k)2

(q2; q2)h(q2; q2)i(q2; q2)k

Next, we consider the righthand side:

lim
n→∞

∞∑
j=−∞

q2j2−j
(
n, 2j; q2

2j

)
2

+ q2j2−j+2n−1

(
n− 1, 2j; q2

2j

)
2

=
1

(q2; q2)∞

 ∞∑
j=−∞

q2j2−j + 0

 (by (2.46) and since |q| < 1)

=
1

(q2; q2)∞
(−q,−q3, q4; q4)∞ (by (2.55))

= (−q; q)∞

=
∞∏
j=1

(1 + qj)
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Thus, for |q| < 1,

∞∑
h=0

∞∑
i=0

∞∑
k=0

qk+i+2i(h+i+k)+(h+k)2

(q2; q2)h(q2; q2)i(q2; q2)k
=
∞∏
j=1

(1 + qj). (3.13)

Note that the triple sum in the preceeding equation can be simplified:

∞∑
h=0

∞∑
i=0

∞∑
k=0

qk+i+2i(h+i+k)+(h+k)2

(q2; q2)h(q2; q2)i(q2; q2)k

=
∞∑
i=0

∞∑
k=0

qk+i+i
2+(i+k)2

(q2; q2)i(q2; q2)k

∞∑
h=0

qh
2+(2i+2k)h

(q2; q2)h

=
∞∑
i=0

∞∑
k=0

qk+i+i
2+(i+k)2

(q2; q2)i(q2; q2)k
(−q2i+2k+1; q2)∞ (by (2.12))

= (−q; q2)∞
∞∑
i=0

∞∑
k=0

qk
2+2ik+2i2+k+i

(q2; q2)i(q2; q2)k(−q; q2)i+k

= (−q; q2)∞
∞∑
i=0

∞∑
K=i

qK
2+K+i2

(q2; q2)i(q2; q2)K−i(−q; q2)K
(by taking K = k + i)

= (−q; q2)∞
∞∑
K=0

qK
2+K

(−q; q2)K

K∑
i=0

qi
2

(q2; q2)i(q2; q2)K−i

= (−q; q2)∞
∞∑
K=0

qK
2+K

(−q; q2)K(q2; q2)K

K∑
i=0

qi
2
(q2; q2)K

(q2; q2)i(q2; q2)K−i

= (−q; q2)∞
∞∑
K=0

qK
2+K

(−q; q2)K(q2; q2)K

K∑
i=0

qi
2

[
K

i

]
q2

= (−q; q2)∞
∞∑
K=0

qK
2+K(−q; q2)K

(−q; q2)K(q2; q2)K
(by (2.10))

= (−q; q2)∞
∞∑
K=0

qK
2+K

(q2; q2)K
.

Thus, (3.13) is equivalent to

(−q; q2)∞
∞∑
j=0

qj(j+1)

(q2; q2)j
=
∞∏
j=1

(1 + qj),

or, after dividing through by (−q; q2)∞,

∞∑
j=0

qj(j+1)

(q2; q2)j
=
∞∏
j=1

(1 + q2j),

which is identity (3.1). I will not go so far as to say that “Identities (3.1)
and (3.10) are dual” since it was necessary to take the limit as n → ∞ and
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to divide out an infinite product in order to obtain (3.1) from the dual of
(3.10). In fact, it is not hard to show that identity (3.1) is self-dual under our
finitization.

In some cases, the sequence of polynomials {Pn(q)}∞n=0 does not converge, but
the subsequence {P2m(q)}∞m=0 converges to one series, and the subsequence
{P2m+1(q)}∞m=0 converges to a different series. One immediate clue that this
may be occuring is when the formula for the degree of the polynomial varies
with the parity of n. For example, with the finite First Rogers-Ramanujan
Identity (4.2), the degree of the polynomial is n2/4 if n is even, and (n2−1)/4
if n is odd. In cases such as this, we consider the dual of (4.2) to be a pair
of identities. The appropriate calculation shows that the dual of (4.2-even) is
identity 79 on the list of Slater [1952], while the dual of (4.2-odd) is another
identity [Slater, 1952, eqn. (99)].

4 The RRtools Maple package

The RRtools that I developed to aid my research for Sills [2002] and Sills [2003]
contains a variety of tools which may be of interest to others. This user’s guide
assumes basic familiarity with the Maple computer algebra system. I developed
the package using Maple V release 4, and later tested it (making necessary
modifications) for use with Maple 6 and Maple 7. I believe that it is fully
functional on at least these three versions of Maple. Please send me an e-mail
if (when) you find bugs.

User input is indicated in non-proportional "typewriter" style font and
preceded by a Maple prompt >, which of course is not to be typed. Maple’s
responses will be indicated directly below in standard mathematical italics.

4.1 Setup and Initialization

The RRtools package may be downloaded free of charge from my web site
http://www.math.rutgers.edu/~asills. Copy the file RRtools1 into the
directory in which you intend to initiate your Maple session. Begin your Maple
session as usual. Type

> read(RRtools1);

Maple responds with a welcome message which includes a list of the procedures
in the package.
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4.2 Basic q-Functions

The Gaussian polynomial
[
A
B

]
qr

is input as gp(A,B,r). RRtools contains the

analogous procedures for the q-trinomial coëfficients T0, T1, tau0, t0, t1

and the related functions U and V. For example,

> gp(5,2,3);

returns

q18 + q15 + 2q12 + 2q9 + 2q6 + q3 + 1

and

> U(2,1,1);

returns

q3 + q + 1.

Also supported is the finite rising q-factorial (a; q)n which is entered in the
form qfact(a,q,n), for example,

> qfact(a,q^2,3);

returns

(1− a)(1− aq2)(1− aq4).

4.3 q-Difference Equations and Recurrences

For a given Rogers-Ramanujan Type series φ(q), the two variable generaliza-
tion f(q, t) which satisfies Conditions 1 is produced using the twovargen pro-
cedure. The input format is twovargen[summand, lowerlim] where summand
may contain (−1)j, rising q-factorials in the numerator and denominator and
must contain q raised to a quadratic power in j in the numerator and exactly
one specially designated q-factorial in the denominator to which the extra
(1 − t) factor is attached. The argument lowerlim is either 0 or 1, depending
on whether the series is of the form

∑∞
j=0 or 1 +

∑∞
j=1 respectively.

For example, to find the f(q, t) associated with identity 60 from the list of
Slater [1952] which is

φ(q) =
∞∑
j=0

qj(j+1)

(q; q2)j+1(q; q)j
,

type
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> twovargen( q^(j*(j+1)) / (qfac(q,q^2,j+1) * spqfac(q,q,j)),0);

and Maple returns
∞∑
j=0

t(2j)q(j2+j)

(t2q, q2)j+1(t, q)j+1

.

Due to a limitation in the Maple output procedure, the q-factorial (a; q)j
appears instead as (a, q)j.

Note the difference between “qfact” and “qfac”: the former returns the rising
q-factorial as a finite product (explicitly if the third argument is an integer,
and in Maple product notation if the third argument is a variable), while the
latter is an inert form to be used in the input argument. For example,

> qfact(a,q,3);

(1− a)(1− aq)(1− aq2)

> qfac(a,q,3);

qfac(a, q, 3)

> qfact(a,q,j);
j−1∏
m=0

(1− aqm)

> qfac(a,q,j);

qfac(a, q, j)

Also note that “spqfac” (i.e. “special q-factorial”) is distinguished from “qfac”
because it is the q-factorial to which the extra (1− t) factor is attached.

To find the f(q, t) associated with

1 +
∞∑
j=0

(q2; q2)j−1q
j2

(q; q2)j(q; q)j−1(q; q)j
,

the LHS of identity 58 from the list of Slater [1952], type

> twovargen( q^(j^2) * qfac(q^2,q^2,j-1) / ( qfac(q,q^2,j) *

qfac(q,q,j-1) * spqfac(q,q,j)), 1);

If φ(q) contains a q-factorial where the coëfficient of j in the index is not 1,
as in (q2; q2)2j+1 in [Slater, 1952, p. 166, eqn. (125)],

∞∑
n=0

(q3; q6)jq
2j(j+2)

(q2; q2)2j+1(q; q2)j
,

the user must rewrite (q2; q2)2j+1 as (q2; q4)j+1(q
4; q4)j:
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> twovargen( qfac(q^3,q^6,j) * q^(2*j*(j+2)) /

(qfac(q^2,q^4,j+1) * qfac(q,q^2,j) * spqfac(q^4,q^4,j)), 0);

The funcrecur procedure returns the nonhomogeneous q-difference equation
satisfied by f(q, t). The input is the same as in twovargen, plus an additional
parameter at the end to be used as a label (such as the identity number from
Slater’s list).

For example, to find the q-difference equation associated with the first Rogers-
Ramanujan Identity (1.1) type

> funcrecur(q^(j^2)/spqfac(q,q,j), 0, 18)

and Maple returns

f18(t) =
1

1− t
+

(
t2q

1− t

)
f18(tq)

(1− t)f18(t) = (1) + (t2q)f18(tq).

Next, we want to know the recurrence and initial conditions satisfied by the
polynomials Pn(q), for which f(q, t) is a generating function:

> polyrecur(q^(j^2)/spqfac(q,q,j),0);

Pn = Pn−1 + Pn−2q
(n−1)

> initialconds(q^(j^2)/spqfac(q,q,j),0);

P0 = 1

P1 = 1

The n-shift operator N acts on F (n, j) by

NF (n, j) = F (n+ 1, j).

Thus for s ∈ Z,
N sF (n, j) = F (n+ s, j).

An annihilating operator, as the name implies, is an n-shift operator whose
application to a polynomial results in zero. To obtain Laurent polynomials in
N which represent n-shift annihilating operators for Pn, use annihiloper.

> annihiloper(q^(j^2)/spqfac(q,q,j),0,forward);

N2 −N − q(n+1)
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returns a polynomial representing an annihilating operator for Pn with forward
shifts, and

> annihiloper(q^(j^2)/spqfac(q,q,j),0,back);

1− 1

N
− q(n−1)

N2

returns a Laurent polynomial representing an annihilating operator with back-
ward shifts.

Since it is often desirable to execute all of the above procedures in sequence,
basic_calcs allows the user to do this:

> basic_calcs(q^(j^2)/spqfac(q,q,j), 0, 18);

φ18(q) =
∞∑
j=0

q(j2)

(q, q)j

f18(t) =
∞∑
j=0

t(2j)q(j2)

(t, q)j+1

f18(t) =
1

1− t
+

(
t2q

1− t

)
f18(tq)

(1− t)f18(t) = (1) + (t2q)f18(tq)

Pn = Pn−1 + Pn−2q
(n−1)

P0 = 1

P1 = 1

1− 1

N
− q(n−1)

N2

N2 −N − q(n+1)

4.4 Conjecturing a Finitization

4.4.1 Calculating a Fermionic Form

As mentioned previously, the fermionic representation of Pn can be calculated
by expanding the q-factorials in f(q, t) using (2.10) and (2.11). The fermipoly
procedure does this automatically:

> fermipoly( q^(j^2)/spqfac(q,q,j),0);
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f(t) =
∞∑

j,h=0

t(2j+h)q(j2)gp(j + h, j, 1)

Var to be eliminated, h

Pn =
∞∑
j=0

q(j2)gp(−j + n, j, 1)

The number of summations in the fermionic form of Pn(q) corresponds to the
number of q-factorials present in a given representation of f(q, t). For example,
consider

f(q, t) =
∞∑
j=0

tjqj
2

(t; q)2j+1

=
∞∑
j=0

tjqj
2

(tq; q2)j(t; q2)j+1

. (4.1)

If we use the representation in the center of (4.1), Pn(q) will be represented
as a double sum:

> fermipoly( q^(j^2)/ qfac(q,q^2,j) / spqfac(q^2,q^2,j));

f(t) =
∞∑

j,h,k1=0

t(j+h+k1)q(j2+k1)gp(j − 1− k1, k1, 2)gp(j + h, j, 2)

Variable to be eliminated, h

Pn =
∞∑

j,k1=0

q(j2+k1)gp(j − 1 + k1, k1, 2)gp(n− k1, j, 2).

We would probably prefer a single sum representation of Pn(q), obtainable
via the representation of f(q, t) given on the righthand side of (4.1), but
fermipoly does not allow the direct input of a q-factorial of the form (q; q)2j+1.
The
fermipolylong procedure allows for this. Note that fermipolylong requires
the summand of f(q, t) in its input:

> fermipolylong( t^j * q^(j^2) / spqfac(t,q,2*j+1));

f(t) =
∞∑

j,h=0

t(j+h)q(j2)gp(2j + h, 2j, 1)

Variable to be eliminated, h

Pn =
∞∑
j=0

q(j2)gp(j + n, 2j, 1).
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4.4.2 Conjecturing a Bosonic Form

We now need a Maple list containing P0(q), P1(q), . . . , PN(q):

> Q:= polylist( q^(j^2)/spqfac(q,q,j),0, 30):

The final argument of 30 indicates that we want the first 30 elements of
P0(q), P1(q), . . . , i.e. the variable Q now contains P0(q), P1(q), . . . P29(q). The
user will probably want to suffix the procedure with a colon instead of a semi-
colon to suppress the huge amount of output that would otherwise be gener-
ated by this procedure. However, it is necessary to look over at least part of
this list, and for that purpose the printpolyseq procedure is included:

> printpolyseq(q^(j^2)/spqfac(q,q,j), 0, 8);

P0 = 1

P1 = 1

P2 = q + 1

P3 = q2 + q + 1

P4 = q4 + q3 + q2 + q + 1

P5 = q6 + q5 + 2q4 + q3 + q2 + q + 1

P6 = q9 + q8 + q7 + 2q6 + 2q5 + 2q4 + q3 + q2 + q + 1

P7 = q12 + q11 + 2q10 + 2q9 + 2q8 + 2q7 + 3q6 + 2q5 + 2q4 + q3 + q2 + q + 1

Since the product side of (1.1) is an instance of Jacobi’s Triple Product Iden-
tity divided by (q, q)∞ and observing (2.8), it seems possible that a Gaussian
polynomial will play a part in the bosonic representation of Pn(q), but which
one? It appears that deg(P2n) = n2 and deg(P2n+1) = n(n+1), so it seems rea-

sonable to guess that the relevant Gaussian polynomials are
[
2n
n

]
q

and
[
2n+1
n+1

]
q

for the even and odd Pn’s respectively. To check this guess, use the search

procedure, which has the syntax

search (list, coefftype, index1, index2, p, terms, parity),
where list is a Maple list of polynomials; coefftype is “gp”, “T0”, “T1”, “tau0”,
“U”, “V”, “t0”, or “t1”; index1 and index2 are respectively the first and
second indices of the q-bi/trinomial coëfficient indicated; p is the exponent of
q in the base; terms is the number of terms in the list Q to to be checked; and
parity is “even”, “odd”, or “all”.

> Ev:= search(Q, gp, 2*n, n, 1, 10, even);
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P2n =

gp(2n, n, 1)− q2gp(2n, n+ 2, 1)− q3gp(2n, n+ 3, 1) + (q11 + q9)gp(2n, n+ 5, 1)

−q21gp(2n, n+ 7, 1)− q24gp(2n, n+ 8, 1), for n < 10

Ev := [1, 0,−q2,−q3, 0, q11 + q9, 0,−q21,−q24]

thus we have

Pn(q) =

[
2n

n

]
q

− q2

[
2n

n+ 2

]
q

− q3

[
2n

n+ 3

]
q

+ q9

[
2n

n+ 5

]
q

+ q11

[
2n

n+ 5

]
q

− . . .

which, using (2.4), can be rewritten as

Pn(q) =

[
2n

n

]
q

− q2

[
2n

n− 2

]
q

− q3

[
2n

n+ 3

]
q

+ q9

[
2n

n− 5

]
q

+ q11

[
2n

n+ 5

]
q

− . . .

Figuring the pattern that the exponents satisfy is aided by

> conjexps(Ev);
5

2
j2 +

1

2
j

> conjexpeven(Ev);

10j2 + j

> conjexpodd(Ev);

10j2 + 11j + 3

and so we conjecture that

P2m(q) =
∞∑

j=−∞
q10j2+j

[
2m

m+ 5j

]
q

− q10j2+11j+3

[
2m

m+ 5j + 2

]
q

,

or equivalently,

P2m(q) =
∞∑

j=−∞
(−1)jqj(5j+1)/2

[
2m

m+ b5j+1
2
c

]
q

.

Using search with the option “odd” instead of “even” allows us to conjecture
the corresponding representation for P2m+1(q). The results for even and odd
n can be combined into

Pn(q) =
∞∑

j=−∞
(−1)jqj(5j+1)/2

[
n

bn+5j+1
2
c

]
q

,

the well-known representation for Pn(q) due to Schur [1917]. Thus,

∑
j=0

qj
2

[
n− j
j

]
q

=
∞∑

j=−∞
(−1)jqj(5j+1)/2

[
n

bn+5j+1
2
c

]
q

. (4.2)
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4.5 Tools for Duality

I have included several procedures to expedite the exploration of duality re-
lationship explained in section 3.3. The duallist procedure accepts a list of
polynomials as input and outputs a list containing the duals. For instance,

> duallist( [ 2q + 1, 3q^2 + 2q + 1, 4q^3 + 3q^2 + 2q + 1])

returns

[q + 2, q2 + 2q + 3, q4 + 2q3 + 3q2 + 4].

The bosedual procedure accepts as input a bosonic form involving a Gaussian
polynomial, or a T0 or T1 trinomial coëfficient and finds the corresponding
representation of the dual in terms of a Gaussian polynomial, or a t0 or t1
trinomial coëfficient. The syntax is as follows:

bosedual(summand, degree of Pn)

For example,

> bosedual((-1)^j * q^(j*(2*j+1))* gp(2*n+1, n+2*j+1, 1), n*(n+1))

returns

∞∑
j=−∞

(−1)jq2j2+jgp(2n+ 1, n+ 2j + 1, 1)

indicating that this polynomial is self-dual.

The fermipolydual procedure works just like the fermipoly procedure, ex-
cept that it calculates the fermionic form for the dual of the polynomials
indicated by the input, rather than for the polynomials themselves. Also, the
final argument of the input is the degree of Pn.

For example, let us find the fermionic representation of the dual of identity
(3.10):

> fermipolydual( qfac(-1,q^2,j) * q^(j^2)/ (qfac(q,q^2,j)

* spqfac(q^2,q^2,j)), 0, n^2);

∞∑
j,h,i1,k1=0

q(i1+k1+2i21+2i1h+2i1k1+h2+2hk1+k2
1)gp(n− i1 − h− k1, i1, 2)

gp(n− i1 − h− 1, k1, 2)gp(n− i1 − k1, h, 2)
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4.6 n-Shift Operator Algebraic Procedures

The multops and rightdiv procedures multiply and divide n-shift operators
respectively. For example,

> A:= multops((1+q^2)*N - q^3, 1-N);

A := −q3 + (−q2 − 1)N2 + (q3 + q2 + 1)N

> rightdiv(A,1-N);

(q2 + 1)N − q3

5 A User’s Guide to the recpf Maple Package

5.1 Setup and Initialization

The recpf and RRtools packages are available for download from my web
site, http://www.math.rutgers.edu/~asills. Copy these two files into the
directory in which you intend to initiate your Maple session. Begin your Maple
session as usual. Type

> read(recpf);

Maple responds with a welcome message, list of procedures, and automatically
loads the RRtools package while loading the recpf package.

5.2 Overview

As mentioned earlier, all of the finite Rogers-Ramanujan type identities in §3 of
Sills [2003] are theoretically provable by the q-Zeilberger algorithm [Zeilberger,
1991] or its multisum generalization [Wilf and Zeilberger, 1992]. Nonetheless,
in practice, it was not possible to prove many of these identities using the
RISC qZeil [Paule and Riese, 1997] or qMultiSum [Riese, 2003] Mathematica
packages, due to complexity issues.

Thus, I offer an alternative. The method of recurrence proof is to show that
a conjectured polynomial form satisfies a particular recurrence (and initial
conditions). Accordingly, one applies a proposed annihilating operator to the
conjectured bosonic form, and successively applies identities such as those
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found in §2.1, §2.2.2, and §2.2.3, until the expression simplifies to zero, thus
demonstrating that the proposed annihilating operator is in fact an annihilat-
ing operator.

Note that the recpf package is not an automated proof package. The user
must guide the proof at each step of the way. In this way, it is similar in spirit
to Krattenthaler’s HYP and HYPQ Mathematica packages [Krattenthaler, 1995],
which follow the motto: “Do it by yourself!”

The advantage that recpf offers is that many of the tedious bookkeeping tasks
associated with carrying out a recurrence proof on pencil and paper are made
faster and more accurate. In this way, recpf is a fast and accurate “electronic
secretary.”

An explanation of each procedure is given below. Note that the finitization
parameter must be n and the summation variable must be j, or the results
computed may be incorrect.

altsign is a global boolean variable. If each term in an expression is to include
the factor (−1)j, this is encoded by setting altsign to true. The default value
of altsign is false.

applyshiftop (oper, summand) applies the shift operator oper to the sum-
mand summand.

asoe (oper, evensummand, oddsummand). When Pn has a different formula
depending on the parity of n, one needs to verify the proposed annihilating
operator for even and odd n separately. This procedure applies the shift oper-
ator oper to the summand whose formula for even n is given by evensummand,
and for odd n by oddsummand in the case where n is assumed to be even.

asoo (oper, evensummand, oddsummand). The analogous operation to the
above for odd n.

e0 (term, expr) applies the relation

T1(L, q; q) = qL−AT0(L,A; q)+T1(L,A+ 1; q)−qL+A+1T0(L,A+ 1; q), (5.1)

which is equivalent to (2.31) to the term-th term in the expression expr and
leaves the other terms unchanged.

eG0 (M, expr) applies (2.5) to the M-th term in the expression expr and
leaves the other terms unchanged.

eG1 (M, expr) applies (2.6) to the M-th term in the expression expr and
leaves the other terms unchanged.
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eT0 (M, expr) applies (2.26) to the M-th term in the expression expr and
leaves the other terms unchanged.

eT1 (M, expr) applies (2.25) to the M-th term in the expression expr and
leaves the other terms unchanged.

eTrb0 (M, expr) applies (2.28) to the M-th term in the expression expr and
leaves the other terms unchanged.

eTrb1 (M, expr) applies (2.27) to the M-th term in the expression expr and
leaves the other terms unchanged.

eTrb28 (M, expr) applies (2.29) to the M-th term in the expression expr and
leaves the other terms unchanged.

eTrb29 (M, expr) applies (2.30) to the M-th term in the expression expr and
leaves the other terms unchanged.

eU0 (M, expr) applies (2.35) to the M-th term in the expression expr and
leaves the other terms unchanged.

eU1 (M, expr) applies (2.34) to the M-th term in the expression expr and
leaves the other terms unchanged.

eV (M, expr) applies (2.36) to the M-th term in the expression expr and
leaves the other terms unchanged.

expandall (expr) puts the exponents of each power of q appearing in each
term of the expression expr into expanded form.

gpsym (M, expr) applies (2.4) to the M-th term in the expression expr and
leaves the other terms unchanged.

neg(M, expr) replaces j by −j in the M-th term of the expression expr, which
is legal since all bosonic forms are bilateral sums over j.

printqmatch (expr) prints an instance of a set of terms of expr with identical
powers of q.

printqmatchall (expr) is like printqmatch, but prints all such instances
instead of one.

printT1 (expr) prints a list of all terms in expr which contain the T1 q-
trinomial coëfficient.

printU (expr) prints a list of all terms in expr which contain the U function.

31



shiftdown(M, expr) replaces j by j − 1 in the M-th term of the expression
expr, which is legal since all Bosonic forms are bilateral sums over j.

shiftup(M, expr) replaces j by j+1 in the M-th term of the expression expr,
which is legal since all Bosonic forms are bilateral sums over j.

sym(M, expr) replaces A by −A in the q-trinomial T0(L,A; q) or T1(L,A; q)
portion of the M-th term, and thus can be used to apply (2.38) or (2.39).

splitU (M, expr) applies (2.22) to the M-th term in the expression expr and
leaves the other terms unchanged.

splitV (M, expr) applies (2.23) to the M-th term in the expression expr and
leaves the other terms unchanged.

5.3 Demonstrations

5.3.1 Proof of a q-trinomial Identity

What follows is a transcription of a Maple session where identity 3.79-t of Sills
[2003], ∑

j=0

qj
2

[
n+ j

2j

]
q

=
∞∑

j=−∞
(−1)jq10j2+2jU(n, 5j; q), (5.2)

is proved. It is assumed that the package recpf has already been loaded.

> op79:= annihiloper( q^(j^2)/ (qfac(q,q^2,j)

* spqfac(q^2,q^2,j)), 0, back);

op79 := 1− −q + 1 + q(2n−1)

N
− q

N2

Note that the first argument of annihiloper is the limit as n tends to ∞
of the summand on the lefthand side of (5.2), i.e. the j-th term of the series
which was finitized to obtain (5.2).

> altsign:= true:

> a1:= applyshiftop(op79, q^(10*j^2 + 2*j) * U(n, 5*j, 1));

a1 :=−q(1+10j2+2j)U(n− 2, 5j, 1)− q(1+10j2+2j)U(n− 1, 5j, 1)

+q(10j2+2j)U(n− 1, 5j, 1)− q(10j2+2j−1+2n)U(n− 1, 5j, 1)

−q(10j2+2j)U(n, 5j, 1)

> a2 := eU1(2,a1);
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a2 :=−q(−2+10j2+2j+2n)U(n− 2, 5j, 1)− q(10j2−3j+n)T1(n− 2, 5j − 1, 1)

−q(1+10j2+7j+n)T1(n− 2, 5j + 2, 1) + q(10j2+2j)U(n− 1, 5j, 1)

−q(10j2+2j−1+2n)U(n− 1, 5j, 1)− q(10j2+2j)U(n, 5j, 1)

> a3 := eU1(6,a2);

a3 :=−q(−2+10j2+2j+2n)U(n− 2, 5j, 1)− q(10j2−3j+n)T1(n− 2, 5j − 1, 1)

−q(1+10j2+7j+n)T1(n− 2, 5j + 2, 1) + q(10j2−3j+n)T1(n− 1, 5j − 1, 1)

−q(1+10j2+7j+n)T1(n− 1, 5j, 1)

> a4 := eT1(4,a3);

a4 :=−q(−2+10j2+2j+2n)U(n− 2, 5j, 1)− q(1+10j2+7j+n)T1(n− 2, 5j + 2, 1)

+q(−2+10j2+2j+2n)T0(n− 2, 5j, 1) + q(10j2−8j+2n)T0(n− 2, 5j − 2, 1)

−q(1+10j2+7j+n)T1(n− 1, 5j, 1)

> a5 := eT1(5,a4);

a5 :=−q(−2+10j2+2j+2n)U(n− 2, 5j, 1) + q(−2+10j2+2j+2n)T0(n− 2, 5j, 1)

+q(10j2−8j+2n)T0(n− 2, 5j − 2, 1) + q(2+10j2+12j+2n)T0(n− 2, 5j + 3, 1)

−q(−2+10j2+2j+2n)T0(n− 2, 5j + 1, 1)

> a6 := splitU(1,a5);

a6 := q(10j2−8j+2n)T0(n− 2, 5j − 2, 1) + q(2+10j2+12j+2n)T0(n− 2, 5j + 3, 1)

> a7 := shiftdown(2,a6);

a7 := 0

5.3.2 Proof of a Finite Second Rogers-Ramanujan Identity

What follows is a transcription of a Maple session where the following finiti-
zation of (1.2) is proved.

∑
j=0

qj(j+1)

[
n− j
j

]
q

=
∞∑

j=−∞
(−1)jqj(5j+3)/2

[
n+ 1

bn+5j+3
2
c

]
q

(5.3)

It is assumed that the package recpf has already been loaded.

> fermipoly( q^(j^2+j)/spqfac(q,q,j),0);
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f(t) =
∞∑

j,h=0

t(2j+h)q(j2+j)gp(j + h, j, 1)

Variable to be eliminated, h

Pn =
∞∑
j=0

q(j2+j)gp(−j + n, j, 1)

> altsign:=false:

> op14:= annihiloper( q^(j^2+j)/spqfac(q,q,j), 0, forward);

op14 := N2 −N − q(n+2)

> a1 := asoe(op14, q^(10*j^2 + 3*j ) * gp(2*n+1, n+5*j+1, 1)

-q^(10*j^2 + 13*j + 4) * gp(2*n+1, n+5*j+4, 1),

q^(10*j^2 + 3*j ) * gp(2*n+2, n+5*j+2, 1)

-q^(10*j^2 + 13*j + 4) * gp(2*n+1, n+5*j+4, 1));

a1 :=−gp(2m+ 1,m+ 5j + 1, 1)q(2m+2+10j2+3j)

+gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2+3j)gp(2m+ 3,m+ 5j + 2, 1)

−q(10j2+13j+4)gp(2m+ 3,m+ 5 + 5j, 1)

−q(10j2+3j)gp(2m+ 2,m+ 5j + 2, 1)

+q(10j2+13j+4)gp(2m+ 2,m+ 5j + 4, 1)

> a2:= eG0(3,a1)

a2 :=−gp(2m+ 1,m+ 5j + 1, 1)q(2m+2+10j2+3j)

+gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2−2j+m+1)gp(2m+ 2,m+ 5j + 1, 1)

−q(10j2+13j+4)gp(2m+ 3,m+ 5 + 5j, 1)

+q(10j2+13j+4)gp(2m+ 2,m+ 5j + 4, 1)

> a3:= eG1(4,a2)

a3 :=−gp(2m+ 1,m+ 5j + 1, 1)q(2m+2+10j2+3j)

+gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2−2j+m+1)gp(2m+ 2,m+ 5j + 1, 1)

−q(10j2+18j+9+m)gp(2m+ 2,m+ 5 + 5j, 1)

> a4:= shiftdown(4,a3)
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a4 :=−gp(2m+ 1,m+ 5j + 1, 1)q(2m+2+10j2+3j)

+gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2−2j+m+1)gp(2m+ 2,m+ 5j + 1, 1)

−q(10j2−2j+m+1)gp(2m+ 2,m+ 5j, 1)

> a5:= eG1(3,a4)

a5 := gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2−2j+m+1)gp(2m+ 1,m+ 5j + 1, 1)

−q(10j2−2j+m+1)gp(2m+ 2,m+ 5j, 1)

> a6:= eG0(3,a5)

a5 := gp(2m+ 1,m+ 5j + 4, 1)q(2m+6+10j2+13j)

+q(10j2−7j+2m+3)gp(2m+ 1,m+ 5j − 1, 1)

> a7:= shiftdown(1,a6)

a7 := 0

Thus, the operator op14 indeed annihilates the conjectured bosonic form for
even n. The proof for odd n is similar; one must of course use asoo instead of
asoe in the beginning of the proof.
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