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Abstract. We find relationships between subword patters and
residue classes of parts in the set of integer compositions of a given
weight.

1. Introduction

This study began with the empirical observation that the number of
odd parts OP (n) occurring in the set of compositions of the integer n
appeared to be equal to the number of “runs” R(n) (see Definition 2.8)
in the compositions of n, and that it was neither obvious nor easy to
prove that this was indeed the case. After recording the necessary
definitions and notations, we present three proofs that OP (n) = R(n):
a bijective proof of a complementary result, a bijective proof of the
original result, and a generating function proof.

From there, we move on to present relationships between number of
parts congruent to i (mod m) and the occurrence of various subword
patterns, again over the set of compositions of n, using generating
functions. We close with enumeration formulas for the number of parts
congruent to i (mod m) among all compositions of n.

This paper is accompanied by a Maple package available for free
download at home.dimacs.rutgers.edu/~asills/SillsMathemMaple.
html and thotsaporn.com. The program implements the bijections
given in §3.

2. Definitions and notation

Definition 2.1. A composition σ of a positive integer n is an l-tuple
of positive integers (σ1, σ2, . . . , σl) such that n =

∑l
i=1 σi. Each σi is

called a part of σ and the number of parts l = l(σ) is the length of σ.
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When no confusion can arise, we forgo the commas and parentheses
when explicitly writing out a composition.

Often it is useful to consider the composition with no parts, ∅ = ( ),
to be the unique composition of 0.

Definition 2.2. The weight of a composition σ, denoted |σ|, is the
sum of the parts of σ.

Definition 2.3. The reverse of a composition σ = (σ1, . . . , σl) is the
composition v(σ) = (σl, . . . , σ1) also of the same weight.

Definition 2.4. Let Cn denote the set of all compositions of n. E.g.,

C4 = {(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)}.

Definition 2.5. Let P (k;n) denote the number of parts in Cn equal
to k. For example, P (1; 4) = 12.

Definition 2.6. Let P (i,m;n) denote the number of parts in Cn con-
gruent to i (mod m), where i is the least positive residue of n modulo
m. That is, we choose to write multiples of m as congruent to m, not
0, modulo m.

Note that P (i,m;n) = P (i;n) + P (i + m;n) + P (i + 2m;n) + · · · .
For example, P (1, 3; 4) = P (1; 4) + P (4; 4) = 13.

Modulus m = 2 will be of particular interest, so we make the follow-
ing defintions.

Definition 2.7. Let OP (n) = P (1, 2;n) (resp., EP (n) = P (2, 2;n))
denote the total number of odd (resp., even) parts in Cn.

Table 1 gives values of OP (n) and EP (n) for 1 ≤ n ≤ 10. Note that
both sequences match [3, A059570] with different offsets.

Table 1. Initial values for number of composition parts
by parity.

n 1 2 3 4 5 6 7 8 9 10

OP (n) 1 2 6 14 34 78 178 398 882 1934

EP (n) 0 1 2 6 14 34 78 178 398 882

We may also denote a composition in the compressed “exponential”
notation

〈σr11 σr22 · · ·σ
rj
j 〉 = (

r1︷ ︸︸ ︷
σ1, σ1, . . . , σ1,

r2︷ ︸︸ ︷
σ2, σ2, . . . , σ2, . . . ,

rj︷ ︸︸ ︷
σj, σj, . . . , σj),
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where we require σi 6= σi+1 for 1 ≤ i ≤ j − 1. E.g.,

C4 = {〈41〉, 〈3111〉, 〈1131〉, 〈22〉, 〈2112〉, 〈112111〉, 〈1221〉, 〈14〉}.

Definition 2.8. We call each instance of ri consecutive parts equal to
σi a run in the composition σ. Let R(n) denote the total number of
runs in all compositions of n; R(n) =

∑
j(σ) where the sum is taken

over all compositions σ = 〈σr11 · · ·σ
rj(σ)
j(σ) 〉 ∈ Cn. Note that R(4) = 14;

see Table 4.

Definition 2.9. A rise, level, drop in a composition σ = (σ1, σ2, . . . , σl)
is any instance of σi < σi+1, σi = σi+1, σi > σi+1, respectively. Let
r(n), `(n), d(n) denote the number of rises, levels, and drops in Cn,
respectively. Continuing our example, r(4) = 3, `(4) = 6, and d(4) = 3.

We shall be concerned with subword pattern matching in composi-
tions and its relationship to parts in congruence classes modulo m.

Definition 2.10. The reduced form of a sequence of parts within a
composition (i.e., a subcomposition) σ = σrσr+1 . . . σr+h−1 is given by
s1s2 . . . sh, where si = j if σi is the jth smallest part of subcomposition
σ.

Definition 2.11. A composition σ contains a subword pattern τ =
τ1τ2 . . . τk if the reduced form of any subsequence of k consecutive
parts of σ equals τ . Thus, rises, levels, and drops are subword pat-
tern matches to 12, 11, and 21 respectively.

Definition 2.12. Let S(τ ;n) denote the number of occurrences of the
subword pattern τ in Cn.

The following definitions regarding initial terms of compositions arise
in §3.2.

Definition 2.13. Let IO(n) denote the number of compositions of n
whose initial part is odd. and IE(n) the number of compositions of n
whose initial part is even.

Definition 2.14. Let I1(n) denote the number of compositions of n
whose initial part is 1 and IB(n) the number of compositions of n whose
initial part is “big,” i.e., greater than 1.

Definition 2.15. Let IL(n) denote the number of compositions of n
whose first two parts are equal, i.e., an initial level.

Definition 2.16. Let IS(n) denote the number of compositions of n
whose first two parts are a “step up,” i.e., have the form k, k + 1.
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Notice that, while IL(n) counts initial levels, IS(n) counts only the
initial rises with difference 1.

In §4 we will make use of integer partitions.

Definition 2.17. A partition of n is a composition of n that contains
no drops.

Definition 2.18. If λ = (λ1, λ2, . . . , λl) is a partition of n, then we
define the conjugate λ′ of λ to be the partition

〈1λl−λl−12λl−1−λl−23λl−2−λl−3 · · · (l − 1)λ2−λ1lλ1〉.
Definition 2.18 is consistent with the usual definition of conjugation

via transposition of Ferrers graphs.

Definition 2.19. Let Pn(T ) denote the set of all partitions of n whose
parts lie in the set T and in which each member of T appears at least
once as a part.

3. Modulus 2: levels and runs versus parity of parts

3.1. Bijection between even parts and levels. The most immedi-
ate resolution of our motivating question comes from considering what
turns out to be the complementary situation.

A bijection between even parts and levels follows immediately from
the following more general yet straightforward result.

Theorem 3.1. P (m,m;n) = S(1m;n).

Proof. We establish a bijection between all parts km for k ≥ 1 among
all compositions of n and all occurrences of the sub words km among
all compositions of n (which are exactly the occurrences of the 1m

pattern). The map is simply km ↔ km, switching the single part km
and the m adjacent k’s. �

Note that this is not a bijection on compositions, rather between
parts divisible by m (which may occur multiple times in a single com-
position) and m adjacent equal parts (which may overlap in a single
composition). Table 2 gives an example.

Table 2. P (2, 2; 4) = S(12; 4) via the bijection from
Theorem 3.1.

2k 4 22 22 211 121 112

k, k 22 112 211 1111 1111 1111

Corollary 3.2. EP (n) = `(n).
4



Proof. Set m = 2 in Theorem 3.1. �

Theorem 3.3. OP (n) = R(n).

Proof. All parts of all compositions of n may be partitioned in the
following two ways: by parity or by the relation between a part and its
successor—any two adjacent parts within a composition make a rise,
level, or drop, and there are |Cn| final parts of compositions not counted
yet. Therefore,

OP (n) + EP (n) = |Cn|+ r(n) + `(n) + d(n). (3.1)

Now everything counted by the right-hand side of (3.1) except the
levels constitutes the runs, (comparing Definitions 2.8 and 2.9, `(n) is
the sum of all ri − 1 terms), i.e.,

R(n) = |Cn|+ r(n) + d(n).

Subtracting EP (n) and `(n), equal by Corollary 3.2, from their respec-
tive sides of (3.1) gives

OP (n) = |Cn|+ r(n) + d(n)

and thus OP (n) = R(n). �

3.2. Bijection between odd parts and runs. Although our moti-
vating question is settled, we found the method somewhat unsatisfying.
Similar to the proof of Theorem 3.1, we want a bijection between the
objects counted by OP (n) and R(n). While the following bijection
is not as direct, it does establish the connection between the desired
objects rather than their complements.

The bijection is recursive, thus Definitions 2.13–2.16 concerning the
initial parts of compositions. Small values are given in Table 3.

Table 3. Small values of some functions based on initial
parts of compositions.

n 1 2 3 4 5 6 7 8 9 10

IO(n) 1 1 3 5 11 21 43 85 171 341

IE(n) 0 1 1 3 5 11 21 43 85 171

IL(n) 0 1 1 3 5 11 21 43 85 171

IS(n) 0 0 1 1 3 5 11 21 43 85

I1(n) 1 1 2 4 8 16 32 64 128 256

IB(n) 0 1 2 4 8 16 32 64 128 256
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The first four of these composition functions shown in Table 3 are
counted by the Jacobsthal numbers [3, A001045] with varying offsets.
Rather than connect each function to this common sequence, we prove
two of the many relationships among them in the context of composi-
tions.

But first we establish the well-known formula for |Cn| by a construc-
tion that addresses I1(n) and IB(n).

Proposition 3.4.

|Cn| =
{

2n−1 if n > 0,
1 if n = 0.

Proof. The claim is clearly true for n = 0, 1. To construct Cn+1, take
two copies of Cn. To the first, prefix each composition with a 1. To the
second, increase the initial part of each composition by 1. The resulting
2|Cn| compositions all have weight n + 1 and the obvious inverse map
establishes a bijection. Keeping track of compositions with initial 1’s
versus initial “big” parts, we also have I1(n) = IB(n) for n ≥ 2. �

See [2, Theorem 1.3] for MacMahon’s proof of Proposition 3.4 using
binomial coefficients.

Proposition 3.5. IE(n) = IL(n).

Proof. This is Corollary 3.2 restricted to the beginning of the compo-
sitions. �

Proposition 3.6. IO(n)− I1(n) = IS(n).

Proof. The difference IO(n) − I1(n) counts compositions of n whose
first part is an odd k ≥ 3. Write k = 2j + 1 where j ≥ 1. The
correspondence k, . . .←→ j, j + 1, . . . gives a bijection to IS(n). �

We now give our second combinatorial proof of Theorem 3.3.

Proof. We proceed by induction. Certainly OP (1) = R(1) = 1 from
the unique composition of one.

We establish recursive expressions for both OP (n+ 1) and R(n+ 1).
Starting with odd parts, we claim that

OP (n+ 1) = (OP (n) + |Cn|) + (OP (n) + IE(n)− IO(n)). (3.2)

Recall the two-part construction from Proposition 3.4. For the half
of Cn+1 with an initial 1, all odd parts of Cn remain odd and there
is one new odd part per composition, the initial 1. This accounts for
(OP (n) + |Cn|) in (3.2).

For the half of Cn+1 with first part greater than 1, those first parts
came from adding 1 to the first part of each of Cn. All odd parts of Cn
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other than the first part stay odd. For the first parts, compositions in
Cn that began with an odd part now start with an even part and vice
versa. Altogether, this accounts for (OP (n) + IE(n)− IO(n)) in (3.2),
which is now fully explained.

For runs, we claim that

R(n+ 1) = (R(n) + IB(n)) + (R(n) + IL(n)− IS(n)). (3.3)

In the half of Cn+1 with an initial 1, the runs of Cn are maintained
and there is one more for each Cn that does not begin with a 1. This
gives (R(n) + IB(n)) in (3.3).

For the half of Cn+1 with first part greater than 1, all runs of Cn

remain except some of those involving the first part.

• When an element of Cn has one part or its first two parts satisfy
σ2 − σ1 /∈ {0, 1}, these runs are among those already counted
by R(n).
• When an element of Cn begins with a run of at least two parts,

i.e., is counted in by IL(n), then the transition from k, k, . . . to
k + 1, k, . . . adds one run.
• When an element of Cn is counted by IS(n), then the transition

from k, k + 1, . . . to k + 1, k + 1, . . . subtracts one run.

This explains the remainder of (3.3), the term (R(n) + IL(n)− IS(n)).
Using the induction hypothesis OP (n) = R(n) in (3.2) and (3.3)

leaves us with the following claim to show that OP (n+ 1) = R(n+ 1).

|Cn|+ IE(n)− IO(n) = IB(n) + IL(n)− IS(n). (3.4)

But it follows from Proposition 3.4 that |Cn| − IB(n) = I1(n), so that
(3.4) is equivalent to

IE(n) + IS(n) = IL(n) + IO(n)− I1(n)

which is exactly the sum of Propositions 3.5 and 3.6. �

The bijection for n = 4 is given explicitly in Table 4. The reader
may download the Maple package mentioned in the introduction to see
details of the bijection through n = 13.

3.3. Generating functions. We outline how our motivating theorem
can also be proved using generating functions. First we need the fol-
lowing proposition.

Proposition 3.7. For positive n, r(n) = d(n).

Proof. A palindromic composition satisfies σ = v(σ) (its reverse) and
therefore has an equal number of rises and drops. For a nonpalindromic
composition ρ, the number of rises in ρ equals the number of drops in
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Table 4. OP (4) = R(4) via the bijection from the §3.2
proof of Theorem 3.1.

odd part 31 31 211 211 13 13 121

run 211 31 22 211 13 121 121

odd part 121 112 112 1111 1111 1111 1111

run 121 31 112 4 13 112 1111

v(ρ), and the number of drops in ρ equals the number of rises in v(ρ).
The set Cn is the union of palindromic compositions and nonpalinromic
pairs {ρ, v(ρ)}. Summing the numbers of rises and drops over all of
these these singletons and pairs gives the result. �

We now give a generating function proof of Theorem 3.3.

Proof. We show that both OP (n) and R(n) are given by the generating
function

x(1− x)

(1 + x)(2x− 1)2
.

The statement for OP (n) is [2, Exercise 3.13]. The outline of an
argument is to show that

∞∑
k=1

(
xy + x2

1− x2

)k
=

xy+x2

1−x2

1− xy+x2

1−x2
=

xy + x2

1− xy − 2x2

is the generating function where the coefficient of ymxn counts compo-
sitions of n containing exactly m odd parts. As the partial derivative
with respect to y gives a factor of m, show then that∑

n≥1

OP (n)xn =
∂

∂y

(
xy + x2

1− xy − 2x2

) ∣∣∣∣∣
y=1

=
(1− x)x

(1 + x)(2x− 1)2
.

For runs, recall from the (first) proof of Theorem 3.3 that

R(n) = |Cn|+ r(n) + d(n) = |Cn|+ 2r(n),

the second equality from Proposition 3.7. For |Cn|, we use the gener-
ating function x/(1 − 2x). (Usually, one uses (1 − x)/(1 − 2x) which
produces the composition ∅ of weight 0, but we do not consider the
empty composition to have any runs.) For r(n), [2, Example 4.6] de-
rives the generating function x3/((1 + x)(1− 2x)2). Thus∑

n≥1

R(n)xn =
x

1− 2x
+

2x3

(1 + x)(1− 2x)2
=

(1− x)x

(1 + x)(2x− 1)2
. �
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4. Generalizing to longer subwords and greater moduli

We have established the relationship between OP (n) = P (1, 2;n) and
R(n), which can be expressed in terms of length two subword patterns.
In the remainder of the paper, we consider similar relations between
P (i,m;n) for some m > 2, which requires analysis of longer subword
patterns.

Theorem 4.1. Let τ = τ1τ2 · · · τl be a subword pattern of length l where

1 = τ1 ≤ τ2 ≤ · · · ≤ τl ≤ l.

Let S(τ ;n) denote the number of matches to the subword pattern τ
among all compositions of n. Considering τ as a composition, |τ | is its
weight. Then∑

n≥0

S(τ ;n)xn =
x|τ |(1− x)2

(1− 2x)2(1− xl)

l−1∏
j=1

1

(1− xl−j)τj+1−τj
.

Proof. Observe that

x|τ |(1− x)2

(1− 2x)2(1− xl)

l−1∏
j=1

1

(1− xl−j)τj+1−τj

=
1− x
1− 2x

· xl

1− xl
l−1∏
j=1

x(l−j)(τj+1−τj)

(1− xl−j)τj+1−τj
· 1− x

1− 2x
. (4.1)

Note that the first and last factors of (4.1) are each

1− x
1− 2x

=
∑
n≥0

|Cn|xn

while the middle factor of (4.1) is

xl

1− xl
l−1∏
j=1

x(l−j)(τj+1−τj)

(1− xl−j)τj+1−τj
=
∑
n≥0

|Pn(T )|xn,

where T is the set of parts appearing in τ ′ when τ is interpreted as a
partition rather than a subword pattern. (Note further that the form
of τ forces τ ′ to have distinct parts, i.e., that τj+1 − τj ∈ {0, 1} for all
j = 1, 2, . . . , l − 1.)

Thus (4.1) is the generating function for the number n of ordered
triples (γ, λ, ρ) where γ ∈ Cn1 , λ ∈ Pn2(T ), ρ ∈ Cn3 , and n = n1 +
n2 + n3.
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Let σ be a composition of n containing the subword µ = µ1µ2 . . . µl
that matches the subword pattern τ . Thus σ is of the form

σ = (γ1, γ2, . . . , γj, µ1, µ2, . . . , µl, ρ1, ρ2, . . . , ρk),

where (γ1, . . . , γj) ∈ Cn1 , (ρ1, . . . , ρk) ∈ Cn3 , for some nonnegative
integers j and k with n1 = |(γ1, . . . , γj)|, n3 = |(ρ1, . . . , ρk)|, n2 = |µ|,
and n = n1 + n2 + n3.

Observe that σ can be mapped bijectively to

((γ1, γ2, . . . , γj), µ
′, (ρ1, ρ2, . . . , ρk)),

noting that the parts of µ′ must all lie in T . This completes the equality
of (4.1) and

∑
n≥0 S(τ ;n)xn. �

See Table 5 for a detailed example of the correspondence.

Table 5. Theorem 4.1 correspondence for S(112223, 13).

C13 elt. 11112223 11122231 1112224 11222311

triple (11, 146,∅) (1, 146, 1) (1, 1146, ∅) (∅, 146, 11)

C13 elt. 1122232 1122241 112225 2112223

triple (∅, 146, 2 ) (∅, 1146, 1) (∅, 11146, ∅) (2, 146, ∅)

Theorem 4.2. ∑
n≥0

P (i,m;n)xn =
xi(1− x)2

(1− 2x)2(1− xm)
.

Proof. Applying Theorem 4.1 to the subword pattern τ = 1m gives∑
n≥0

S(1m;n)xn =
xm(1− x)2

(1− 2x)2(1− xm)

(terms in the product are all 1 in for this τ). By Theorem 3.1, this
shows that the claim holds for i = m.

A basic fact of compositions is that P (k;n) = P (k + 1;n + 1) by
the bijection k ↔ k + 1 in Cn and Cn+1, respectively. Summing over
remainder classes gives P (i,m;n) = P (i+1,m;n+1) so that summing
over all n gives the same result for each i. �

Given the similarity in the forms of the generating functions for
S(τ ;n) and P (i,m;n), one expects them to be related, hopefully in
simple ways. After an example and two general relations, we give
derivations for P (2, 3;n) and P (1, 3;n). Subword pattern expressions
for all P (i,m;n) through m = 6 are given in the appendix.
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Example 4.3. The trivial subword pattern 1 gives S(1;n) = |Cn|.
From Theorem 3.1, we know P (2, 2;n) = S(11;n). Therefore P (1, 2;n) =
S(1;n)− S(11;n).

From the generating functions of Theorems 4.1 and 4.2, this expres-
sion for P (1, 2;n) implies

x

1− x2
=

x

1− x
− x2

1− x2
. (4.2)

Theorem 4.4. Suppose P (i,m;n) is given as a linear combination
of S(τ ;n) pattern occurrence counts. Then P (ki, km;n) is given by
the same linear combination (same number of terms, same coefficients,
etc.) where each τ = (τ1, . . . , τl) is replaced by (τ k1 , . . . , τ

k
l ).

Proof. This is a direct consequence from Theorems 4.1 and 4.2. Given
a linear combination of

∑
S(τ ;n)xn that represents

∑
P (i,m;n)xn,

replacing every x with xk, except for those in the common factor
(1 − x)2/(1 − 2x)2, yields a linear combination of

∑
S(τ k;n)xn that

represents
∑
P (ki, km;n)xn. �

Theorem 4.5. P (i,m;n) can be represented as a linear combination
of S(τ ;n) for subword patterns τ of length no more than m.

Proof. From (4.1)∑
n≥0

S(τ ;n)xn =
(1− x)2

(1− 2x)2
· xl

1− xl
l−1∏
j=1

x(l−j)(τj+1−τj)

(1− xl−j)τj+1−τj

=
(1− x)2

(1− 2x)2

τl∏
k=1

xtk

1− xtk
,

where tj is the cardinality of the set {τj | 1 ≤ j ≤ l, τj ≥ k}. Regroup-
ing the conclusion of Theorem 4.2, given∑

n≥0

P (i,m;n)xn =
(1− x)2

(1− 2x)2
· xi

(1− xm)
,

a linear representation of P (i,m;n) by S(τ ;n) where the length of
τ being no more than m is equivalent to a linear representation of
xi/(1− xm) with terms of the form

τl∏
k=1

xtk

1− xtk
(4.3)

such that tk < t1 ≤ m for any k 6= 1.
We proceed by induction on m; the initial cases are given in Exam-

ple 4.3. For any given i and m, if they share a common factor, the
11



conclusion follows from Theorem 4.4. Now let m > i ≥ 2 be relatively
prime to i and u = max{u | ui < m} . Then (u+ 1)i > m as i and m
are relatively prime. We now have

xi

1− xm
=

xi

1− xi
+

xm

1− xm
· xi

1− xi
− x2i

(1− xm)(1− xi)
. (4.4)

Focusing on the last term of (4.4), the only one not of the form (4.3),
we have

x2i

(1− xm)(1− xi)
=
x2i
(
1 + xi + · · ·+ x(u−1)i

)
(1− xm)(1− xui)

=
1

1− xm
·
(

x2i

1− xui
+ · · ·+ xui

1− xui

)
+

x(u+1)i

(1− xm)(1− xui)

=

(
1 +

xm

1− xm

)
· x2i

1− xui
+ · · ·+

(
1 +

xm

1− xm

)
· xui

1− xui

+
xm

1− xm
· x

(u+1)i−m

1− xui
.

By induction hypothesis, each xji/(1−xui) term and x(u+1)i−m/(1−xui)
can be represented, with tk ≤ ui < m, as linear combinations of the
form (4.3). Together with (4.4), this establishes the claim for P (i,m;n)
when i ≥ 2. �

We give two detailed examples of determining P (i,m;n) in terms of
subword patterns.

Example 4.6. The next case ism = 3; we initially determine P (2, 3;n).
Leaving out the (1−x)2/(1−2x)2 factor common to the expressions in
Theorems 4.1 and 4.2, the remaining factor for P (2, 3;n) is x2/(1−x3).
Using (4.4), we have

x2

1− x3
=

x2

1− x2
+

x3

1− x3
· x2

1− x2
− x4

(1− x3)(1− x2)

=
x2

1− x2
+

x3

1− x3
· x2

1− x2
− x3

1− x3
· x

1− x2

=
x2

1− x2
+

x3

1− x3
· x2

1− x2
− x3

1− x3

(
x

1− x
− x2

1− x2

)
=

x2

1− x2
+ 2 · x3

1− x3
· x2

1− x2
− x3

1− x3
· x

1− x
,

where the substitution in the third line uses (4.2). We conclude that

P (2, 3;n) = S(11;n) + 2S(122;n)− S(112;n).
12



Example 4.7. We could determine a subword pattern expression for
P (1, 3;n) using the previous example, but instead we demonstrate a
more general approach.

From Theorem 4.5, P (i,m;n) is a linear combination
∑

τ cτ S(τ ;n)
where the τ run over all nondecreasing subword patterns of length at
most 3. Explicitly, using the generating functions and coefficients to
be determined, we have

(1− x)2x

(1− 2x)2 (1− x3)
=
c1(1− x)x

(1− 2x)2
+

c11(1− x)2x2

(1− 2x)2 (1− x2)

+
c12(1− x)x3

(1− 2x)2 (1− x2)
+

c111(1− x)2x3

(1− 2x)2 (1− x3)
+

c112(1− x)x4

(1− 2x)2 (1− x3)

+
c122(1− x)2x5

(1− 2x)2 (1− x2) (1− x3)
+

c123(1− x)x6

(1− 2x)2 (1− x2) (1− x3)
.

After clearing denominators, we equate coefficients of x, x2, . . . , x11 to
obtain a linear system of 11 equations in the seven cτ unknowns. The
general solution is

(c1, c11, c12, c111, c112, c122, c123) = (1,−1, t,−1− t, 1− t,−2− t, 0),

where t is a free variable, and so

P (1, 3;n) = S(1;n)− S(11;n) + tS(12;n)− (t+ 1)S(111;n)

+ (1− t)S(112;n)− (t+ 2)S(122;n).

Letting t = 0 gives the expression

P (1, 3;n) = S(1;n)− S(11;n)− S(13;n) + S(112;n)− 2S(122;n).

The appendix gives subword pattern expressions for all P (i,m;n)
through m = 6.

5. Enumeration

In this last section, we derive various enumeration formulas.

Theorem 5.1.

P (k;n) =

{
(n− k + 3)2n−k−2 if n > k,

1 if n = k.

Proof. This theorem collects results of [1, Question 3]. The k = 1 case
is established by combinatorial reasoning and recurrence relations. The
equality P (k;n) = P (k+1;n+1) mentioned in the proof of Theorem 4.2
completes their argument, as it follows that P (k;n) = P (1;n− k+ 1).
For another approach, see [4, p. 120, Ex. 24] and its solution. �

13



Theorem 5.2.

P (i,m;n) =

2n+m−i−2
(

(n− i+ 3)(2m − 1)−m
)

(2m − 1)2

 ,
where bxe is the integer nearest to x.

Proof.

P (i,m;n) =
∞∑
j=0

P (jm+ i;n)−
∑

j=1+bn−i
m
c

P (jm+ i;n)

=
2n+m−i−2

(
(n− i+ 3)(2m − 1)−m

)
(2m − 1)2

+ E,

using Theorem 5.1, where

E = E(i,m;n) =
1

4
Jm | n− iK− U,

and JqK is the Iverson bracket, i.e., 1 if q is true and 0 if q is false, with

U = U(i,m;n) =
∞∑

j=1+bn−i
m
c

(n− jm− i+ 3)2n−jm−i−2.

Thus, we will be done upon demonstrating that |E| < 1/2 for all n, m,
and i.

To this end, we note that U is a discrete periodic function of n with
period m since, by direct computation, it can be shown that

U(i,m;n)− U(i,m;n+m) = 0.

For fixed m, the set of all values assumed by U is the same for all
i = 1, 2, . . . ,m. In fact, U(i,m;n) = U(i+ j,m;n+ j), so without loss
of generality we take i = 1.

By summing the series, we find

U(1,m;n) =
2n−mb(n−1)/mc

8(2m − 1)2

×
(

(2m − 1)

(
n−m

⌊
n− 1

m

⌋)
− (2 + 2m(m− 2)) + Jm = 1K

)
.

From here, it can be shown that, for all nonnegative integers k,

U(1,m;mk + j) =
2j−3

(2m − 1)2
(2m(m− j − 2) + (j + 2)) . (5.1)

14



As the right hand side of (5.1) is independent of k, without loss
of generality, set k = 0 and consider |U(1,m; j)| as a real variable
over the closed interval 1 ≤ j ≤ m. Using elementary calculus, we may
conclude that the function |U(1,m;n)| is maximized at n = m and this
maximum value is less than 1/4 when m > 1, thus |E| < 1/2. For the
case m = 1, U(1, 1;n) = 1/2 and so |E| = |1/4− 1/2| = 1/4 < 1/2. �

Corollary 5.3. The total number of parts in Cn is 2n−2(n+ 1).

Proof. Set i = m = 1 in Theorem 5.2. For a combinatorial proof, see
[4, p. 120, Ex. 23] and its solution. �

We conclude with an exact equation for our sequence of interest; see
Table 1.

Corollary 5.4.

OP (n) =

⌊
2n−1(3n+ 4)

9

⌉
=

2n−1(3n+ 4)− 2(−1)n

9
.

Proof. Setting i = 1 and m = 2 in Theorem 5.2 gives the first equality
and computing E(1, 2;n) leads to the second. For the error term, one
could also use a partial fraction decomposition directly. �
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Appendix: Subword expressions to modulus six

Here we provide subword pattern expressions for all P (i,m;n) through
m = 6. These were determined by the methods described in Example
4.7 or Theorem 4.4. Recall that often these expressions are not unique.
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In the cases where there were free variables, they were assigned values
that minimized the number of terms. The following hold for all n ∈ N.

P (1, 2;n) = S(1;n)− S(11;n)

P (2, 2;n) = S(11;n)

P (1, 3;n) = S(1;n)− S(11;n)− S(13;n) + S(112;n)− 2S(122;n)

P (2, 3;n) = S(11;n)− S(112;n) + 2S(122;n)

P (3, 3;n) = S(13;n)

P (1, 4;n) = S(1;n)− S(11;n)− S(13;n) + S(1122;n)− S(123;n)

− S(1223;n) + 2S(1233;n)

P (2, 4;n) = S(11;n)− S(14;n)

P (3, 4;n) = S(13;n)− S(1122;n) + S(123;n) + S(1223;n)− 2S(1233;n)

P (4, 4;n) = S(14;n)

P (1, 5;n) = S(1;n)− S(11;n)− S(13;n)− S(15;n) + 2S(142;n)

+ 3S(1322;n)− 2S(1123;n) + S(124;n)− S(1233;n)

+ 2S(12233;n) + S(1233;n)− 2S(12334;n) + 4S(12344;n)

P (2, 5;n) = S(11;n)− S(14;n) + S(142;n) + 2S(1322;n) + S(124;n)

− S(12233;n) + S(1233;n) + S(12334;n)− 2S(12344;n)

P (3, 5;n) = S(13;n)− S(142;n) + S(1322;n) + 2S(1123;n)− S(124;n)

+ S(1233;n)− 2S(12233;n)− S(1233;n) + 2S(12334;n)

− 4S(12344;n)

P (4, 5;n) = S(14;n)− S(1123;n) + S(124;n) + S(12233;n)− S(1233;n)

− S(12334;n) + 2S(12344;n)

P (5, 5;n) = S(15;n)

P (1, 6;n) = S(1;n)− S(11;n)− S(13;n)− S(15;n) + S(16;n) + S(1124;n)

− S(125;n)− S(12233;n) + S(1234;n) + S(123344;n)

− S(12343;n)− S(123445;n) + 2S(123455;n)

P (2, 6;n) = S(11;n)− S(14;n)− S(16;n) + S(1422;n)− 2S(1124;n)
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P (3, 6;n) = S(13;n)− S(16;n)

P (4, 6;n) = S(14;n)− S(1422;n) + 2S(1124;n)

P (5, 6;n) = S(15;n)− S(1124;n) + S(125;n) + S(12233;n)− S(1234;n)

− S(123344;n) + S(12343;n) + S(123445;n)− 2S(123455;n)

P (6, 6;n) = S(16;n)

Department of Mathematics, Saint Peter’s University, Jersey City,
NJ 07306, USA

E-mail address: bhopkins@saintpeters.edu

Department of Mathematical Sciences, Georgia Southern Univer-
sity, Statesboro, Georgia, 30458, USA

E-mail address: asills@georgiasouthern.edu

Mahidol University, International College, Highway 3310, Salaya,
Phutthamonthon District, Nakhon Pathom 73170, Thailand

E-mail address: thotsaporn@gmail.com

Department of Mathematical Sciences, Georgia Southern Univer-
sity, Statesboro, Georgia, 30458, USA

E-mail address: hwang@georgiasouthern.edu

17


	1. Introduction
	2. Definitions and notation
	3. Modulus 2: levels and runs versus parity of parts
	3.1. Bijection between even parts and levels
	3.2. Bijection between odd parts and runs
	3.3. Generating functions

	4. Generalizing to longer subwords and greater moduli
	5. Enumeration
	Acknowledgments
	References
	Appendix: Subword expressions to modulus six

