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Abstract. The fibbinary numbers are positive integers whose binary representation contains
no consecutive ones. We prove the following result: If the jth odd fibbinary is the nth odd
fibbinary number, then j = bnφ2c − 1.

1. Background

The Fibonacci numbers {Fn}n≥0 are given by F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2

for n ≥ 2.
Recall the following theorem of Zeckendorf [1]:

Zeckendorf’s theorem. Every positive integer can be written uniquely as the sum of distinct,
nonconsecutive Fibonacci numbers.

The Zeckendorf representation z(n) of n ∈ N is the unique k-tuple of decreasing noncon-
secutive Fibonacci numbers whose sum is n. Note that although F2 = F1 = 1, we always
associate 1 with F2 in the Zeckendorf representation.

For example,
z(4) = (3, 1) = (F4, F2),

z(5) = (5) = (F5),

and
z(100) = (89, 8, 3) = (F11, F6, F4).

The sequence {fib(n)}n≥1 of fibbinary numbers1 is given as follows: For n > 0, if z(n) =
(Fi1 , Fi2 , . . . Fik) is the Zeckendorf representation of n, then

fib(n) :=

k∑
j=1

2ij−2.

For example,
fib(4) = fib(F4 + F2) = 24−2 + 22−2 = 1012 = 5.

fib(5) = fib(F5) = 25−3 = 10002 = 8.

fib(100) = fib(F11 + F6 + F4) = 211−2 + 26−2 + 24−2 = 10000101002 = 532,

where the 2 subscript indicates the usual binary (base two) representation.

The work of the third author was partially supported by a grant from the Simons Foundation (#245307).
1According to [3], the name “fibbinary” is due to Marc LeBrun: “. . . integers whose binary representation

contains no consecutive ones and noticed that the number of such numbers with n bits was Fn.”—posting to
sci.math by Bob Jenkins, July 17, 2002.
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2. Statement of main result relating odd fibbinaries to the golden ratio

It is easy to generate the odd fibbinary numbers from the binary representations and find
the corresponding value of the original integer, e.g.,

• 12 = 20 = fib(F2) = fib(1);
• 1012 = 22 + 20 = fib(F4 + F2) = fib(4);
• 10012 = 23 + 20 = fib(F5 + F2) = fib(6);
• . . ..

Let odfib(n) denote the nth odd fibbinary number, i.e.,

odfib(1) = 12, odfib(2) = 1012, odfib(3) = 10012, . . . .

Let

Z(n) := fib−1(odfib(n)),

so that

Z(1) = 1, Z(2) = 4, Z(3) = 6, Z(4) = 9, . . . .

In other words, if the nth odd fibbinary number is the jth fibbinary number, then j = Z(n).
This sequence

1, 4, 6, 9, 12, 14, 17, . . .

appears to be “A003622” in OEIS [2], defined as

{
⌊
nφ2

⌋
− 1}∞n=1 = {bnφc+ n− 1}∞n=1 (1)

where

φ =
1 +
√

5

2
is the golden ratio, which satisfies φ2 = φ+ 1, and of course arises as

lim
n→∞

Fn+1

Fn
= φ.

j z(j) fib(j) odfib−1(j)

1 = bφ2c − 1 = Z(1) (1) = (F2) 12 = 1 1
2 (2) = (F3) 102 = 2 —
3 (3) = (F4) 1002 = 4 —
4 = b2φ2c − 1 = Z(2) (3, 1) = (F4, F2) 1012 = 5 2
5 (5) = (F5) 10002 = 8 —
6 = b3φ2c − 1 = Z(3) (5, 1) = (F5, F2) 10012 = 9 3
7 (5, 2) = (F5, F3) 10102 = 10 —
8 (8) = (F6) 100002 = 16 —
9 = b4φ2c − 1 = Z(4) (8, 1) = (F6, F2) 100012 = 17 4
10 (8, 2) = (F6, F3) 100102 = 18 —
11 (8, 3) = (F6, F4) 101002 = 20 —
12 = b5φ2c − 1 = Z(5) (8, 3, 1) = (F6, F4, F2) 101012 = 21 5

The correspondence displayed above is naturally conjectured to be true in general.

Theorem 2.1. Let j be a positive integer such that the jth fibbinary number is odd. Suppose
that this jth fibbinary number is the nth odd fibbinary number. Then

j = Z(n) =
⌊
nφ2

⌋
− 1 = bnφc+ n− 1 (2)
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for any n ≥ 1.

3. Proof of Theorem 2.1

It is easy to check that (2) is true for small values of n. In the rest of this note we provide
a general proof for n ≥ 3.

Next, we record the following observation on odfib(n) as a lemma.

Lemma 3.1. For any 1 ≤ k ≤ Fn−1 and n ≥ 2, we have

odfib(Fn + k) = 2n + odfib(k).

Proof. Immediate as each digit in the binary representation of odfib(n) corresponds to a specific
Fibonacci number. �

For example,

odfib(10) = odfib(8 + 2) = odfib(F6 + 2) = 10001012 = 26 + 1012 = 26 + odfib(2).

Lemma 3.2. For any 1 ≤ k ≤ Fn−1 and n ≥ 2, we have

Z(Fn + k) = Fn+2 + Z(k).

Proof. Since each digit in the binary representation of odfib(n) corresponds to a distinct Fi-
bonacci number in the sum of Z(n) under the Zeckendorf representation, we can claim the
same for Z(n). That is,

Z(Fn + k) = fib−1(odfib(Fn + k))

= fib−1(2n + odfib(k))

= Fn+2 + fib−1(odfib(k))

= Fn+2 + Z(k).

�

For example,
Z(10) = Z(F6 + 2) = 25 = 21 + 4 = F8 + Z(2).

From Lemma 3.2, we have

Z(Fn + k)− Z(Fn + k − 1) = Z(k)− Z(k − 1) (3)

for 2 ≤ k ≤ Fn−1 and
Z(Fn + 1) = Fn+2 + 1. (4)

Now to show (2) for any n, we only need to show analogues of (3) and (4) for
⌊
nφ2

⌋
− 1,

i.e.,

b(Fn + k)φc − b(Fn + k − 1)φc =
⌊
(Fn + k)φ2

⌋
−
⌊
(Fn + k − 1)φ2

⌋
=
⌊
kφ2
⌋
−
⌊
(k − 1)φ2

⌋
= bkφc − b(k − 1)φc (5)

for 2 ≤ k ≤ Fn−1, and

b(Fn + 1)φc+ Fn =
⌊
(Fn + 1)φ2

⌋
− 1 = Z(Fn + 1). (6)

Remark. Intuitively, this can be considered as using Z(Fn + 1) as the “stepping stone” to
prove (2) for Z(Fn + k) for k = 2, 3, . . . , Fn−1 using induction.
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In order to establish (5), it is essentially sufficient to show that {Fnφ} is never large enough
to affect the difference bkφc− b(k − 1)φc, where {x} := x−bxc, the fractional part of the real
number x.

We make use of the following fact, which is easily established by induction in n:

(−1)nτn = −Fnτ + Fn−1, (7)

where τ =
√
5−1
2 = φ− 1 satisfying τ2 = −τ + 1. Consequently,

{Fnφ} = {Fnτ} = {−(−τ)n}
for any n.

Making use of the fact that τ = φ− 1, it suffices to show

b(Fn + k)τc − b(Fn + k − 1)τc = bkτc − b(k − 1)τc . (8)

To show (8), simply consider
{kτ} ± {Fnτ}

for any 1 ≤ k ≤ Fn−1. We will show that this value never reaches 1 or goes below zero and
hence {Fnτ} will not affect bkτc − b(k − 1)τc.
(i) To show {kτ} + {Fnτ} < 1, consider the Zeckendorf representation of k as the sum of
non-consecutive Fibonacci numbers.

If k < Fn−1, then
k = Fa1 + Fa2 + . . .+ Fas

where
1 ≤ a1 ≤ a2 − 2 ≤ a2 ≤ a3 − 2 ≤ . . . ≤ as ≤ n− 2.

Then

{kτ}+ {Fnτ} = {(Fa1 + . . .+ Fas)τ}+ {Fnτ}
≤ τa1 + τa2 + . . .+ τas + τn

< τ + τ3 + τ5 + . . .

=
τ

1− τ2
= 1.

If k = Fn−1, we have

{kτ}+ {Fnτ} = τn−1 + τn ≤ τ2 + τ3 < 1

for any n ≥ 3.
(ii) To show {kτ} − {Fnτ} > 0, simply note that

{kτ} − {Fnτ} = {(Fa1 + . . .+ Fas)τ} − {Fnτ}
≥ τa1 − τa2 − . . .− τas − τn

> τa1 − τa1+2 − τa1+4 − . . .

= τa1
(

1− τ2

1− τ2

)
> 0

if k < Fn−1 and
{kτ} − {Fnτ} = τn−1 − τn > 0

if k = Fn−1.
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Cases (i) and (ii) imply that

bFnτ + kτc = bFnτc+ bkτc .
Thus (8) and (5) are proved.

By (4), (6) is equivalent to
b(Fn + 1)φc = Fn+1 + 1. (9)

Fact (7) implies that

b(Fn + 1)φc = Fn + 1 + b(Fn + 1)τc
= Fn + 1 + bFn−1 − (−τ)n + τc
= Fn + 1 + Fn−1 + bτ − (−τ)nc
= Fn+1 + 1

for n ≥ 3. Thus (9) and hence (6) is proved. �
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